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Atherosclerosis is a pathological process that takes place in the major
arteries and is the underlying cause of heart attacks, stroke and peripheral
artery disease. The earliest detectable lesions, called fatty streaks, contain
macrophage foam cells that are derived from recruited monocytes. More-
advanced atherosclerotic lesions, called fibro-fatty plaques, are the result of
continued monocyte recruitment and smooth muscle cell migration and
proliferation. Variable numbers of CD4+ T cells are found in atherosclerotic
lesions, and cytokines secreted by T helper 1 (Th1)- or Th2-type cells can have
a profound influence on macrophage gene expression within atherosclerotic
plaques. This review briefly addresses the key features of macrophage biology
and discusses the factors that influence the growth and development of
atherosclerotic lesions (atherogenesis). It then considers the potential role of
chemokines in mediating monocyte recruitment and macrophage differentiation
within atherosclerotic lesions.

Atherosclerosis, a pathological remodelling
of the arteries, is a major cause of morbidity
and mortality in developed countries and is the
underlying basis of myocardial infarction,
stroke and peripheral artery disease (Ref. 1).
Atherosclerosis can be considered as an unusual
form of chronic inflammation occurring within
the artery wall (Ref. 2). Fatty streaks, the earliest
detectable lesions in atherosclerosis, contain

macrophage-derived foam cells that differentiate
from recruited blood monocytes. Monocytes are
recruited to tissues via constitutive signals and in
response to inflammatory mediators. Monocyte
recruitment and macrophage differentiation are
also a central feature of other important human
diseases characterised by chronic inflammation
such as rheumatoid arthritis and tuberculosis
(Refs 3, 4).
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More-advanced atherosclerotic lesions,
called fibro-fatty plaques, are the result of
continued monocyte recruitment, together with
smooth muscle cell migration and proliferation
(Ref. 5), and can contain CD4+ T cells (Ref. 6).
Chemokines or chemoattractant cytokines
constitute a family of over 40 different cell-
signalling molecules important for constitutive
trafficking and recruitment of leukocytes in
response to inflammatory mediators (Refs 7,
8, 9, 10). Some chemokines that can act as
potent mediators of monocyte migration and
macrophage differentiation are expressed in
human atherosclerotic lesions (Ref. 11). Indeed,
as discussed below, experiments performed
with gene-knockout mice lacking macrophage
chemoattractant protein 1 (MCP-1) have
suggested an important role for the CC chemokine
MCP-1 and its specific receptor CCR2 in the initial
stages of atherogenesis (Ref. 12).

In recent years, pathologists have advanced
the idea of stable and unstable (or vulnerable)
atherosclerotic plaques (Ref. 13). Stable plaques
are characterised by a thick fibrous cap
overlying a plaque that does not contain a
cholesterol-rich necrotic core. By contrast,
unstable plaques have a thin fibrous cap,
contain a higher ratio of macrophages to
smooth muscle cells, and have a lipid-filled
necrotic core (Ref. 14). Unstable plaques are
more likely to rupture, which exposes the
thrombogenic core of the lesion to arterial
blood. This leads to platelet aggregation and
the formation of an arterial thrombus attached
to the vessel wall. Thrombus material can break
away from the wall and be transported to a
distant site (embolism), where it may lead to
blockage of smaller arteries. The clinical
consequences of arterial thrombosis are heart
attacks, strokes and renal disease. Indeed, the
majority (~60%) of arterial thrombosis is
associated with ruptured atherosclerotic
plaques. Another commonly observed feature
of atherosclerotic plaques is endothelial cell
denudation (plaque erosion) and other changes
in the endothelial cells that predispose to
arterial thrombosis and its clinical sequelae
(Ref. 15).

This article will briefly review some key
features of macrophage biology and the factors
that influence the growth and development of
atherosclerotic lesions (atherogenesis). The
potential role of chemokines in mediating

monocyte recruitment and macrophage
differentiation within atherosclerotic lesions will
then considered.

Macrophage biology
Macrophages are bone-marrow-derived
phagocytic cells that are important for tissue
homeostasis and are found in virtually all tissues
of the body. Macrophages also play important
roles in the innate and acquired immune
responses (Ref. 16). Tissue macrophages are
derived from circulating blood monocytes that
are recruited to tissues by constitutive or
inflammatory signals. Once present in tissues,
macrophages can exhibit great variation in
morphology and undertake a wide range of
physiological functions. For instance, Kupffer cells
that line the liver sinusoids are important for the
uptake and clearance of modified low-density
lipoprotein (LDL) and bacterial endotoxins via
macrophage scavenger receptors such as SR-A
(Ref. 17). Alveolar macrophages in the lung
are important for the clearance of airborne
pathogens and excess amounts of surfactant
proteins (Ref. 18).

Specific monoclonal antibodies (mAbs) have
been developed that allow the detection of both
tissue-resident macrophages and macrophages
recruited to sites of inflammation and infection.
Some of these mAbs (e.g. those against CD68)
recognise all macrophages (Ref. 19), while others
(e.g. F4/80) recognise only a subpopulation of
tissue macrophages (Ref. 20). The heterogeneity
in macrophage populations revealed by
antibody staining serves to emphasise the
diverse physiological roles of macrophages in
normal tissues. This diversity is also apparent
within macrophage populations present within
atherosclerotic lesions. For instance, macrophage-
derived foam cells within atherosclerotic lesions
express high levels of scavenger receptors,
which are important in the pathogenesis of
atherosclerosis.

Macrophages are responsible for tissue
remodelling during development and wound
repair. They secrete many different cytokines,
growth factors and proteases that facilitate the
remodelling of the extracellular matrix and
encourage the recruitment of other cell types
such as fibroblasts and smooth muscle cells that
are important for wound repair. Key cytokines
secreted by macrophages include interleukin 1β
(IL-1β), tumour necrosis factor α (TNF-α), IL-10,



Accession information: (01)00369-6a.pdf (short code: txt001dgw); 5 November 2001
ISSN 1462-3994 ©2001 Cambridge University Press

http://www-ermm.cbcu.cam.ac.uk

A
th

er
o

sc
le

ro
si

s:
 r

o
le

 o
f 

ch
em

o
ki

n
es

 a
n

d
 m

ac
ro

p
h

ag
es

3

expert reviews
in molecular medicine

IL-12 and transforming growth factor β
(TGF-β). Macrophage-derived growth factors
that have significant effects on the pathology of
atherosclerosis include fibroblast growth factors
(FGFs), platelet-derived growth factor (PDGF),
which is a potent mediator of smooth muscle
cell growth, migration and differentiation, and
macrophage colony-stimulating factor (M-CSF),
which is an autocrine mediator of macrophage
differentiation.

Macrophages can also secrete numerous
proteases, protease activators and protease
inhibitors in response to physiological signals. Of
particular interest in atherosclerosis are
members of the matrix metalloproteinase
(MMP) family of zinc-containing endopeptidases
(Ref. 21). Histochemical and genetic association
studies have implicated MMP-1, MMP-2,
MMP-3 and MMP-9 as important players in
vascular pathology (Refs 22, 23, 24, 25). In
addition, activated macrophages secrete tissue
plasminogen activator (tPA) and urokinase
plasminogen activator (uPA); these plasminogen
activators activate the serine protease plasmin,
which plays a key role in fibrinolysis (the
dissolution of blood clots) (Ref. 26).

LDLs and macrophage scavenger
receptors
Scavenger receptors are defined by their ability
to endocytose modified (e.g. acetylated or
oxidised)  forms of  LDL and were  f i rs t
described by Goldstein and Brown in 1979 (Ref.
27). LDL consists of a cholesterol-rich core
packaged by phospholipids and a specific set of
apolipoproteins, such as apoB100, that target
uptake via the LDL receptor (LDLR). LDLs
transport cholesterol and triglycerides from the
liver to extrahepatic tissues and are taken up
and catabolised by specific receptor-mediated
endocytosis. Both the lipid and protein moieties of
LDL are subject to oxidative damage through the
action of free radicals. There is some debate about
the precise nature of the chemical modifications
to LDL in vivo but it is clear that oxidised LDL is
highly atherogenic (Ref. 28). Unlike the classical
LDLR, which is downregulated by increasing
cellular cholesterol levels, the ability of
scavenger receptors to take up modified LDL is
not inhibited by increasing cellular cholesterol.
This leads to the appearance of macrophage-
derived foam cells whose cytoplasm is swollen
with lipid droplets. Lipid-laden foam cells are

found within the sub-endothelial space of the
arteries in fatty streak lesions, which are the first
recognisable atherosclerotic lesions, as well as in
more-advanced unstable atherosclerotic plaques
(Refs 29, 30).

Molecular cloning has identified at least
eight different scavenger receptors that can be
expressed by macrophages (Refs 29, 30). These
receptors have very different structures and can
bind and internalise a wide range of polyanionic
ligands, including modified forms of LDL (see
Table 1). The relative contribution of some
scavenger receptors has been assessed in gene-
knockout mice and the macrophage scavenger
receptors SR-A and CD36 are known to be
important in animal models of atherogenesis.
Indeed, mice with a disruption in the gene

Table 1. Macrophage scavenger
receptors and their ligandsa

(tab001dgw)

Scavenger receptor Ligandsb

SR-AI/SR-AII acLDL, oxLDL, LPS,
bacteria

MARCO Bacteria

CD36 oxLDL

SR-B1 HDL – mediates reverse
cholesterol transport

CD68 oxLDL

LOX-1 oxLDL

SR-PSOX oxLDL

Galectin-3 acLDL, oxLDL, AGE-LDL

a Information reviewed in Refs 29 and 30.
b Scavenger receptor ligands have been identified
by uptake studies in transfected cells and
confirmed using blocking antibodies or
macrophages of gene-knockout animals.

Abbreviations: acLDL, acetylated LDL;
AGE-LDL, advanced glycation endpoint LDL;
HDL, high-density lipoprotein; LDL, low-density
lipoprotein; LOX-1, lectin-like oxidised lipoprotein
receptor 1; LPS, lipopolysaccharide (of
Gram-negative bacteria); oxLDL, oxidised LDL;
MARCO, macrophage receptor with collagenous
structure; SR-PSOX, scavenger receptor that binds
phosphatidylserine and oxidised lipoprotein.
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encoding SR-A show a reduced size of
atherosclerotic lesions, suggesting a
proatherogenic role for SR-A (Ref. 31). Similarly,
CD36-knockout mice demonstrate reduced
atherosclerotic lesion development when crossed
with apolipoprotein E (apoE)-deficient mice
and fed a high-fat diet (Ref. 32). Macrophages
derived from CD36–apoE double null mice bind
and internalise significantly less oxidised LDL
than do macrophages from wild-type mice.
These results support an important role for
CD36 in atherosclerotic lesion development
in vivo.

Atherosclerosis
The development of atherosclerotic lesions in
human arteries can be regarded as a modified
form of chronic inflammation (Refs 2, 33). The key
initial event in this pathology appears to be
damage to the endothelial cells of the artery. The
exact nature of the endothelial damage is
presently unknown but it results in the cell-surface
expression by endothelial cells of molecules that
mediate leukocyte adhesion, such as intercellular
cell adhesion molecule 1 (ICAM-1) and vascular
cell adhesion molecule (VCAM) (Ref. 34).
Following damage to the endothelium, monocytes
are recruited into the subendothelial space, where
they differentiate into macrophages. These
recruited macrophages endocytose modified
forms of LDL via scavenger receptors to form
foam cells, the hallmark of fatty streak lesions. The
lesions develop into fibro-fatty plaques, which
contain large numbers of macrophages and some
CD4+ T cells, and show evidence of smooth muscle
migration and proliferation (Fig. 1). In human
arteries, these fibro-fatty plaques develop into
complex atherosclerotic lesions that are liable to
rupture (Refs 35, 36).

Prospective studies have identified several
important risk factors for the development of
coronary heart disease in human populations.
These include smoking, diabetes, hypertension,
elevated plasma LDL–cholesterol levels and a
family history of heart disease (Ref. 37). In order
to define the precise molecular mechanisms by
which these environmental and genetic factors
influence the process of atherosclerosis, it is
essential to study animal models of arterial
disease. The most widely used small animal
model of atherosclerosis is the apoE-knockout
mouse developed in the laboratories of Jan
Breslow and Nobuyo Maeda (Refs 38, 39).

Atherosclerosis models
The apolipoprotein apoE is the main protein
ligand on the surface of the murine LDL
particle, which is recognised by the LDLR. Mice
that lack a functional gene encoding apoE have
elevated levels of plasma LDL–cholesterol
(hypercholesterolaemia). Plasma cholesterol
levels can be further elevated by feeding mice
a ‘western-type diet’ containing 21% fat and
0.2% cholesterol. Feeding apoE−/− mice such a
high-fat diet results in the development of
atherosclerotic lesions in their major arteries,
including the aorta and coronary arteries.
Another approach to develop a mouse model
of atherosclerosis has been to ablate the gene
encoding the  LDLR,  which mimics  the
s i tuat ion found in homozygous familial
hypercholesterolaemia in humans (Ref. 40). Both
apoE−/− and LDLR−/− mice develop atherosclerotic
lesions that share many features of early
human atherosclerosis and contain large numbers
of macrophage-derived foam cells. More-
advanced murine lesions also contain CD4+

T cells and show evidence of smooth muscle
cell migration and proliferation. However,
unlike the situation that pertains in human
arterial disease, the murine lesions show little
or no evidence of atherosclerotic plaque
rupture with the resultant thrombo-embolism
that characterises human cardiovascular
disease. The reason for this lack of progression
to more-complex atherosclerotic lesions is
not clear.

Although the murine apoE and LDLR gene-
knockout models do not recapitulate all the
features of human atherosclerosis, they have
been widely used to study the effect of specific
genes on the earliest stages of atherogenesis.
Furthermore, several intervention studies have
been performed in apoE−/− and LDLR−/− mice to
test the effect of drugs and blocking mAbs on
atherosclerotic lesion development. Several
studies have revealed an important role for
macrophages and macrophage-derived products
in atherosclerosis (see Table 2). Ablation of genes
involved in various aspects of macrophage
differentiation or function result in a decrease in
the development of atherosclerotic lesions in these
mice, indicating an active role for macrophages
in the initiation and growth of atherosclerotic
plaques. For an excellent review of genetic
modifiers of atherosclerosis in mouse models, see
Ref. 41.
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Figure 1. Structure of an unstable human atherosclerotic plaque. The normal blood vessel wall comprises
an inner layer of endothelial cells (the intima) in contact with the lumen of the vessel, in which the blood
circulates, a middle layer of smooth muscle cells and elastic extracellular matrix fibres (the tunica media) and
an outer layer of connective tissue (the adventitia) in contact with the tissues. (a) In an atherosclerotic plaque,
a cholesterol-rich lipid core forms within the intimal layer and this is infiltrated with cell types such as
macrophages, macrophage-derived foam cells (laden with lipid droplets), smooth muscle cells and CD4+

T cells. If the plaque ruptures, as shown in (b), the thrombogenic core of the lesion is exposed to blood in the
lumen of the artery. Platelet adhesion and activation initiates the formation of an arterial thrombus
(fig001dgw).
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Chemokines
The chemoattractant cytokines or chemokines
are small disulphide-linked polypeptides,
typically of 60–70 amino acids in length, and are
potent chemoattractants for leukocytes such as T
cells, natural killer (NK) cells, monocytes and
macrophages (Ref. 42). Although the chemokine
supergene family has only been recognised for a
decade, it is now known to contain over 40
different members classified into different
subfamilies on the basis of conserved structural
features.

The CXC (or α-) chemokines have a single
amino acid separating the two amino terminal
cysteine residues (C1, C2) of the protein, while
CC (or β-) chemokines have no amino acid
separating the signature C1 and C2 cysteines.
Chemokines mediate their effects via interaction
with specific chemokine receptors expressed on
a wide range of cell types. The CC chemokine
receptors are CCR1 to CCR9, and the CXC
chemokine receptors are CXCR1 to CXCR6.
The fractalkine receptor is CX3CR1 and the
lymphotactin receptor is XCR1 (Ref. 43). A list of
the currently identified human chemokine

receptors and their chemokine ligands is given in
Table 3 (Refs 9, 43).

Chemokine receptors are G-protein-coupled
receptors (GPCRs) with seven transmembrane
(TM7) spanning α-helices. Chemokines bind to
their cognate chemokine receptor with high
affinity (typically with a dissociation constant of
Kd ~1–3 nM). Chemokine receptors are unusual
among the many characterised members of the
TM7 receptor superfamily in having multiple
high-affinity ligands for a single receptor. A
good example of this is the CCR4 receptor,
which binds the CC chemokines macrophage-
derived chemokine (MDC) and thymus- and
activation-regulated chemokine (TARC) with high
affinity and mediates cellular signalling with
nanomolar concentrations of either chemokine
ligand (Ref. 44).

Binding of a chemokine to its specific receptor
on the cell surface leads to the generation of an
intracellular signal via a GαI-containing G-protein
complex and this results in cell chemotaxis
towards the source of the chemokine. This
process is inhibited by pertussis toxin. In
addition to these short-lived signals, some

Table 2. Genes that modify macrophage biology and atherosclerosis in apoE
or LDLR gene-knockout micea (tab002dgw)

Magnitude of decrease
Protein encoded in development of
by ablated gene atherosclerotic lesion Function of deficient protein

M-CSF 5× Growth factor important for macrophage differentiation

MCP-1 5× Potent monocyte chemoattractant

CCR2 2–3× Monocyte/macrophage receptor for MCP-1

CXCR2 ~2–3× Receptor for CXC chemokines

SR-A 5× Macrophage scavenger receptor for modified LDL

CD36 4× Scavenger receptor for modified LDL

12/15 LO 2.5× Generation of inflammatory mediators

CD154 5× Ligand for the CD40 receptor

a For a detailed discussion of the effect of gene ablation on the development of atherosclerotic lesions in
apoE−/− and LDLR−/− mice, see Ref. 41.

Abbreviations: 12/15 LO, 12/15 lipoxygenase; CCR2, CC chemokine receptor 2; CXCR2, CXC chemokine
receptor 2; LDL, low-density lipoprotein; LDLR, LDL receptor; M-CSF, macrophage colony-stimulating factor;
MCP-1, monocyte chemoattractant protein 1; SR-A, scavenger receptor A.
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chemokine receptors such as CXCR4 can give
rise to prolonged signalling and leukocyte
activation via sustained activation of protein
kinase B (Ref. 45). Fractalkine/CX3CL1 is a novel
chemokine that differs from other chemokines
in having three intervening amino acids
between the two cysteine residues, resulting
in a CX3C motif, and exists as a membrane-bound

molecule with the chemokine motif attached to a
long mucin stalk (Ref. 46). When cleaved from the
cell surface, soluble forms of fractalkine mediate
chemotaxis of monocytes, NK cells and T cells
(Ref. 46). Immobilised forms of fractalkine have
been shown to mediate tight adhesion of cells
carrying the CX3CR1 receptor and this adhesion
does not require integrins, calcium or an opposing

Table 3. Human chemokine receptors and their ligandsa (tab003dgw)

Chemokine
receptor Chemokine ligandc PMN Mφ T cell Other

CXCR1 IL-8 + (+)b

CXCR2 IL-8, GRO-α, ENA-78, NAP-2 + (+)

CXCR3 IP-10, Mig, I-TAC +

CXCR4 SDF-1 + +

CXCR5 BCA-1 + B cells

CXCR6 Bonzo (+) +

CCR1 RANTES, MIP-1α, MIP-1β +

CCR2 MCP-1, MCP-2, MCP-3 +

CCR3 Eotaxin, RANTES, MCP-2 + Eosinophils

CCR4 MDC, TARC + +

CCR5 RANTES, MIP-1α, MIP-1β +

CCR6 MIP-3α Dendritic cells

CCR7 SLC, MIP-3β Dendritic cells

CCR8 I-309 +

CCR9 TECK +

CX3CR1 Fractalkine/ CX3CL1 + + NK cells

XCR1 Lymphotactin +

a For further information, see recent reviews Refs 9 and 43.
b The plus symbol in parentheses (+) indicates some debate in the literature.
c For chemokine nomenclature, see Ref. 9.

Abbreviations: BCA-1, B lymphocyte chemoattractant; ENA-78, epithelial neutrophil-activating peptide 78;
GRO-α , growth-related oncogene α ; IL-8, interleukin 8; IP-10, interferon-γ-inducible protein 10; I-TAC,
interferon-inducible T-cell alpha chemoattractant; Mφ, macrophage; MCP-1, monocyte chemoattractant
protein 1; MDC, macrophage-derived chemokine; Mig, monokine induced by interferon γ; MIP-1,
macrophage inflammatory protein 1; NAP-2, neutrophil-activating peptide 2; PMN, polymorphonuclear
leukocyte; SDF-1, stromal-cell-derived factor 1; SLC, secondary lymphoid tissue chemokine; TARC, thymus-
and activation-regulated chemokine; TECK, thymus-expressed chemokine.
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cell membrane (Ref. 47). Furthermore, fractalkine-
dependent firm adhesion of monocytes and T cells
can occur under flow conditions (Refs 48, 49).

Many important human diseases, including
asthma, arthritis and atherosclerosis are
characterised by acute or chronic recruitment
of leukocytes from the blood into affected
tissues. Chemokines have been implicated as
inflammatory mediators in a wide range of
pathologies on the basis of studies using clinical
material and animal disease models (for
reviews, see Refs 50, 51). At first sight, the
chemokine network, with its multiple high-
affinity ligands and ‘promiscuous’ receptors,
might seem like a cellular signalling system with
a great deal of redundancy. However, analysis of
chemokine- and chemokine-receptor-knockout
mice has revealed a unique, non-redundant role
for some chemokines in leukocyte trafficking,
inflammation and immunity.

Chemokine- and chemokine-receptor-
knockout mice
Initial characterisation of chemokine- and
chemokine-receptor-knockout animals has
revealed that some ligand–receptor interactions
play a key role in the development of the
haematopoietic system. One example is the
binding of stromal-cell-derived factor (SDF-1) to
CXCR4; animals in which genes encoding these
proteins are ablated are not viable (Refs 52, 53).
Ablation of the murine CXC chemokine receptor
CXCR2 causes specific defects in constitutive
leukocyte trafficking, with CXCR2 gene-knockout
animals exhibiting lymphadenopathy owing to
increased numbers of B cells and neutrophils
(Ref. 54).

Other chemokine-knockout animals have less
obvious phenotypes and exhibit no significant
differences in constitutive leukocyte trafficking.
Differences in inflammatory cell recruitment are
only seen when the animals are immunised,
challenged with specific pathogens or subjected
to physiological stress. An early example of this
was the specific defect in antiviral immunity seen
in MIP-1α gene-knockout mice (Ref. 55). Another
example, which will be discussed in greater detail
in the next section, is deletion of the gene encoding
the CC chemokine MCP-1. Mice homozygous for
deletion of the gene encoding MCP-1 exhibit no
obvious phenotype but, when on a C57/BL6
mouse background and crossed with apoE−/− mice,
a significant decrease in the size of atherosclerotic

lesions is observed (Ref. 56). This provides
important evidence that MCP-1 plays a non-
redundant role in monocyte recruitment and/or
macrophage retention in atherosclerotic lesions.
A summary of important observations made with
chemokine- and chemokine-receptor-knockout
animals is provided in Table 4. The list is not
exhaustive and new observations will be added
as gene-knockout animals are studied more
closely in a wider range of disease models.

The role of MCP-1 and CCR2
in atherogenesis
Much of the current interest in the role of
chemokines in atherogenesis stems from
experiments performed in MCP-1 and CCR2
gene-knockout mice. MCP-1 was among the first
of the CC chemokines to be described. MCP-1
(originally called JE) was identified as a PDGF-
induced transcript and shown to be a potent
chemoattractant for monocytes (Ref. 57). In 1991,
MCP-1 expression in human atherosclerotic
lesions was clearly demonstrated by in situ
hybridisation (Refs 58, 59). Further indirect
evidence for MCP-1 being a potential player in
atherogenesis came from the demonstration
that treatment of human endothelial cells with
oxidised LDL induced MCP-1 secretion (Ref.
60). Ablation of the gene encoding MCP-1 in
apoE−/− mice results in a marked reduction in the
size of atherosclerotic lesions (Ref. 56), strongly
suggesting a role for this CC chemokine in
atherogenesis.

The TM7 chemokine receptor CCR2, which
binds and signals in response to nanomolar
concentrations of MCP-1, was cloned in 1994
(Ref. 61). Subsequently, it was shown that cells
transfected with CCR2 signal in response to
other CC chemokines such as MCP-3 (Ref. 62).
In the first paper describing the phenotype
of CCR2-knockout mice, it was noted that
homozygous CCR2-knockout animals showed
reduced clearance of the intracellular bacterial
pathogen Listeria monocytogenes. Similar to the
findings for MCP-1 gene ablation, it was shown
that ablation of the CCR2 gene in apoE−/− mice
caused a significant reduction in atherosclerosis
(Ref. 63). This result has been independently
confirmed by other laboratories (Ref. 64) and
MCP-1 gene ablation has been shown to reduce
the size of atherosclerotic lesions in other
transgenic mouse models of atherosclerosis such
as mice transgenic for human apoB100 (Ref. 65).
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While it is clear that the MCP-1–CCR2 ligand–
receptor combination is playing a role in the
initiation of atherosclerosis in mice, it is not clear
exactly how MCP-1 expression contributes to
atherogenesis. Endothelial cell expression of
MCP-1 can be stimulated by treatment with
oxidised LDL (Ref. 60), adhesion of activated

platelets, homocysteine and the inflammatory
cytokine TNF-α. All of these in vitro treatments
have physiological relevance for the pathology of
atherosclerosis and they appear to act through the
transcription factor NF-κB (Ref. 66).

Endothelial cell expression of MCP-1 may be
of particular importance in atherogenesis not just

Table 4. Chemokine- and chemokine-receptor-knockout mice (tab004dgw)

Ablated gene Phenotype Refs

Chemokinea

MIP-1α Reduced inflammation following viral infection 55

MCP-1 Reduced atherosclerosis in apoE−/− mice 56, 65

Eotaxin No effect on eosinophil accumulation in lung inflammation 79

CC chemokine receptors

CCR1 Reduced NK-cell recruitment 80

CCR2 Reduced atherosclerosis in apoE−/− mice 63, 64
Increased airway allergic inflammation in response to Aspergillus 81
Reduced airway hypersensitivity following allergen challenge 82
Increased susceptibility to pulmonary Cryptococcus infection 83
Reduced Langerhans cell migration to draining lymph nodes 84
Increased severity of experimental glomerulonephritis 85
Inability to clear Listeria infections 86
Reduced EAE 87

CCR4 Increased resistance to endotoxic shock 88

CCR5 Increased mortality following Cryptococcus infection 89
Reduced clearance of Listeria infections 90

CCR6 Reduced humoral immune response to oral antigens 91

CCR7 Altered secondary lymphoid organ structure 92
Reduced humoral immune responses and contact sensitivity 93

CXC chemokine receptors

CXCR1 Reduced neutrophil recruitment 50

CXCR2 Lymphadenopathy 54
Delayed wound healing 94
Defective acute neutrophil accumulation 95
Reduce macrophage recruitment in atherosclerosis 72

CXCR4 Non-viable embryos, defects in vasculature 52, 53

CXCR5 Defects in B-cell homing and defective lymph nodes 96

a For chemokine nomenclature, see Ref. 9.

Abbreviations: apoE, apolipoprotein E; EAE, experimental autoimmune encephalitis; MCP-1, monocyte
chemoattractant protein 1; MIP-1, macrophage inflammatory protein 1, NK cell, natural killer cell.
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because of the effects of MCP-1 on monocyte
chemotaxis but also because of recently described
effects of MCP-1 on triggering firm adhesion of
monocytes to activated endothelium. Addition of
the CC chemokine MCP-1 or the CXC chemokine
IL-8 can cause rapid arrest of human monocytes
rolling on E-selectin-expressing endothelial cells
under flow conditions (Ref. 67). This rapid arrest
of rolling monocytes is blocked by antibodies that
specifically recognise α and β integrins. These in
vitro experiments suggest that MCP-1 could play
a doubly important role in monocyte recruitment
by mediating both monocyte chemoattraction and
firm adhesion of rolling monocytes to activated
endothelial cells.

Other biological effects of MCP-1 and CCR2
that might be relevant in the context of
atherogenesis are beginning to emerge. One
interesting defect in MCP-1-deficient mice is a
polarisation of the adaptive immune system
towards T helper 1 (Th1)-type immune responses,
characterised by the production of interferon γ
(IFN-γ) and IL-2, and low levels of expression of
the Th2-type cytokines IL-4 and IL-10 (Ref. 68).
Thus, high levels of MCP-1 expression within an
atherosclerotic plaque containing CD4+ T cells
could favour the elaboration of a Th2-type
immune response characterised by the expression
of Th2 cytokines, which might favour the
elaboration of a wound repair response rather
than inflammation. It is likely that the multiple
effects of MCP-1 on monocyte migration,
monocyte adhesion, macrophage differentiation
and immune responses account for the growing
number of defects observed in experimental
disease models in CCR2-knockout mice (see
Table 4).

The expression of other CC chemokines
in atherosclerosis
Recent gene expression experiments using a
DNA microarray of 8600 expressed genes has
revealed that the expression of the CC chemokine
eotaxin is markedly upregulated in aortic smooth
muscle cells treated with TNF-α  (Ref. 69).
Immunohistochemical analys is  of human
atherosclerotic lesions showed expression of
eotaxin by smooth muscle cells and the
presence of CCR3+ cells within macrophage-
rich regions of the plaques. Interestingly, the
CCR3 chemokine receptor is preferentially
expressed on eosinophils, mast cells and Th2-type
CD4+ Τ cells (Ref. 70).

The genes that encode the CC chemokines
MDC and TARC and the CX3C chemokine
fractalkine are linked on human chromosome
16q13 (Ref. 71). Expression of MDC and TARC
in primary human macrophages is upregulated
by the Th2 cytokines IL-4 and IL-13 but not
by the Th1 cytokine IFN-γ.  Furthermore,
analysis of human atherosclerotic lesions by
immunohistochemistry has shown that a subset
of macrophages within human atherosclerotic
plaques express MDC, fractalkine and TARC
(Fig. 2 and Ref. 71).  It  is possible that
macrophage expression of these chemokines
can be used as a surrogate marker of Th2-type
immune responses within human atherosclerotic
lesions. However, the mere presence of an
inflammatory mediator in a lesion does not
mean that it has a significant functional role in
the pathogenesis of disease. It will be important
to design experiments to critically evaluate the
role of CC chemokines other than MCP-1 in
atherosclerosis.

The expression of CXC chemokines
in atherosclerosis
Early evidence for a potential role for CXC
chemokines in atherogenesis came from
experiments in which LDLR−/− mice were
reconstituted with bone marrow from CXCR2-
knockout mice (Ref. 72). The size of atherosclerotic
lesions was reduced in mice whose blood
contained CXCR2−/− monocytes. The chemokine
receptor CXCR2 signals in response to several
CXC chemokines, including IL-8 (see Table 3).
IL-8 expression in human atherosclerotic
plaques has been demonstrated by in situ
hybridisation (Ref. 73). Ligands for the
peroxisome proliferation associated receptor α
(PPARα), including oxidised phospholipids,
upregulate endothelial cell expression of IL-8,
while ligands for the nuclear receptor PPARγ
downregulate IL-8 expression (Ref.  74).
Endothelial expression of IL-8 might facilitate
firm adhesion of rolling monocytes under flow
conditions (Ref. 67) and IL-8 has been shown to
decrease macrophage expression of tissue
inhibitors of MMPs (Ref. 75). Thus, several lines
of evidence suggest that IL-8 expression by
cells within the atherosclerotic plaque may be
contributing to atherogenesis.

The chemokine receptor CXCR3 has multiple
high-affinity CXC chemokine ligands including
IFN-γ-inducible protein 10 (IP-10), monokine
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induced by IFN-γ (Mig) and IFN-inducible T-cell
alpha-chemoattractant (I-TAC) (see Table 3). All
three IFN-γ-inducible CXC chemokines are
expressed by endothelial cells and macrophages
in human atherosclerotic lesions (Ref. 76).
Furthermore, the same atherosclerotic lesions
contain T cells expressing the CXCR3 receptor
(Ref. 76). Interestingly, the induction of all three
CXC chemokines by IFN-γ in endothelial cells can
be specifically downregulated by PPARγ ligands
(Ref. 77). The role of PPARγ as a potential
modulator of inflammation in atherosclerosis is

an interesting area of research in cardiovascular
pathology (Ref. 78).

Key questions and future challenges
The aim of this review has been to illustrate
the potential importance of chemokines as
inflammatory mediators in atherosclerosis.
There are clearly many questions concerning
chemokines and atherogenesis that remain
unanswered.

The dramatic effects of ablating the genes
encoding MCP-1 and CCR2 in murine models of

Figure 2. Chemokine expression in a human atherosclerotic plaque. Immunohistochemistry was performed
on serial sections of an atherosclerotic plaque removed from the carotid artery of a 55-year-old man undergoing
carotid endarterectomy (surgical excision of the atheromatous tunica intima of an artery). Brown-staining cells
are positive for the antigen detected using the indicated primary antibodies. The specificity of staining was
confirmed using appropriate control antibodies (not shown). (a) Anti-CD68 antibody stains the many macrophages
present in the lesion, whereas (b) the anti-smooth muscle cell antibody reveals that there are very few smooth
muscle cells in this atherosclerotic plaque. Staining with specific antibodies that recognise (c) fractalkine and
(d) macrophage-derived chemokine (MDC) show that both of these chromosome 16q13-encoded chemokines
are being expressed in this lesion. For more details of techniques and controls used in a similar experiment,
see Ref. 69 (fig002dgw).

500 µm

Anti-CD68 antibody (stains macrophages)

Anti-fractalkine antibody Anti-MDC antibody

Anti-smooth muscle cell antibodya b

c d

Chemokine expression in a human atherosclerotic plaque
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atherosclerosis have shown the importance of this
chemokine–receptor combination for monocyte
recruitment in the earliest stages of atherogenesis.
Small molecule antagonists of CCR2 have been
developed and it will be interesting to see if these
drugs are effective at reducing atherosclerosis in
animal models of cardiovascular disease.

CC chemokines other than MCP-1 are
expressed in human atherosclerotic lesions and
it will be important to show whether these
chemokines play a non-redundant role in
atherogenesis. This will require the analysis of
appropriate gene-knockout animals or the use
of chemokine-binding proteins such as the vCCI
protein of vaccinia.

Experimental evidence for the role of
CXCR2 in atherogenesis has been presented
and immunohistochemistry has shown that
several CXC chemokines, as well as the CX3C
chemokine fractalkine, are expressed in human
atherosclerotic plaques. Further evidence for the
role of these chemokines in human atherogenesis
might be provided by analysis of polymorphisms
of genes encoding chemokines and chemokine
receptors in human populations.

It is important to remember that chemokines
are not the only class of inflammatory mediator
present in atherosclerotic lesions. However,
studying the expression patterns of chemokines
in atherogenesis might shed light on important
regulatory mechanisms (such as Th1 and Th2
immune responses) that determine the nature of the
inflammatory response within the arterial wall.

Perhaps the biggest challenge faced in
studying the role of chemokines in atherogenesis
is identifying whether chemokine receptors offer
new avenues for therapeutic intervention in
human cardiovascular disease.
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Further reading, resources and contacts

Reviews

The following three review articles are an excellent starting point for exploring the extensive literature on
macrophages, atherosclerosis and chemokines:

Ross, R. (1999) Atherosclerosis – an inflammatory disease. New Engl J Med 340, 115-126, PubMed ID:
99091097

Lusis, A.J. (2000) Atherosclerosis. Nature 407, 233-241, PubMed ID: 20454704

Luster, A.D. (1998) Chemokines – chemotactic cytokines that mediate inflammation. New Engl J Med 338,
436-445, PubMed ID: 98117072

Glass, C.K. and Witztum, J.L. (2001) Atherosclerosis. The road ahead. Cell 104, 503-516, PubMed ID:
21135273

Textbooks

The following textbooks have good sections on cardiovascular pathology:

Majno G. and Joris, I. (1996) Cells, Tissues and Disease: Principles of General Pathology, Blackwell
Science, Cambridge, MA, USA

Woolf N. (2000) Cell, Tissue and Disease, 3rd edn, Harcourt Publishers, Edinburgh, UK

Websites

The Atherosclerosis and Thrombosis Index, a module of the Internet Pathology Laboratory for Medical
Education by the University of Utah, provides images of atherosclerotic lesions and has a section
devoted to thrombosis and its clinical sequelae, as well as a tutorial on myocardial infarction:

http://www-medlib.med.utah.edu/WebPath/CVHTML/CVIDX.html

The American Heart Association (AHA) contains many useful sections including the AHA journals
and AHA scientific statements. The site has many useful articles for clinicians, researchers
and patients:

http://www.americanheart.org/

The British Heart Foundation (BHF) is the leading UK charity supporting research into all aspects of
cardiovascular disease. Their website contains many useful articles for patients and carers:

http://www.bhf.org.uk/

The Chemokine Website, part of the cytokine family cDNA database, is a useful lexicon of alternative
nomenclatures and links to database resources:

http://cytokine.medic.kumamoto-u.ac.jp/CFC/CK/chemokine.html

The Greaves Lab Website provides an introduction to the research programme of our laboratory in the
areas of macrophage gene expression, chemokine biology and atherogenesis:

http://dunn1.path.ox.ac.uk/~greaves/
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