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Abstract

Autism is a neurological disorder of unknown etiology. The onset of the abnormal growth and development within the brain is also not

known. Current thought by experts in autism is that the time of onset is prenatal, occurring prior to 30 weeks gestation. However, autism

comprises a heterogeneous population in that parents report either that their child was abnormal from birth, or that their child was

developmentally normal until sometime after birth, at which time the child began to regress or deteriorate. Anecdotal reports suggest that

some children with autism have significant illness or clinical events prior to the development of autistic symptoms. Conceivably, these

children may become autistic from neuronal cell death or brain damage sometime after birth as result of insult. To support this theory is that

marked Purkinje cell loss, the most consistent finding in the autistic disorder, can result from insult. Evidence suggests that the Purkinje cell is

selectively vulnerable. This article discusses a theory that the selective vulnerability of the Purkinje cell may play a role in the etiology of

autism, and suggests that a future direction in autism research may be to investigate the possibility of neuronal cell loss from insult as a cause

of autism. Results of a small pilot survey are also discussed.

q 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction: autism prevalence, symptomatology,

and etiology

Autism and pervasive developmental disorder (PDD) are

relatively common developmental disorders. Epidemiolo-

gical studies from the 1980’s estimated autism to occur in

more than one out of every 1000 children [1,2]. However, a

recent study by Baird et al. [3] (1999) reported a prevalence

rate in autism of one in 333 children. Recent reports from

the California Department of Developmental Services also

suggest that the rates in autism are increasing, implicating

the importance of external or environmental factors that

may be changing [4,5]. The cause of autism is unknown [6].

Persons diagnosed with autism are grouped together

under the behaviorally defined diagnosis of autism or

autistic spectrum disorder due to similar behavioral

symptomatology [7]. The symptomatology of autism/PDD

includes: (1) qualitative impairment in the ability to interact

socially, characterized by the ‘autistic aloneness’; (2)

qualitative impairment in communication, that can range

from being completely nonverbal to a delay in acquisition of

spoken language and abnormal speech patterns; and (3)

restricted, repetitive, and stereotyped patterns of behavior

and activities, e.g. restricted or narrow interests, obsessive

desire for sameness, and abnormal body movements

(abnormal posturing, hand flapping, toe walking, and

rocking) [6,8,9]. Autism is a poorly understood disorder

that results in a significant lifelong disability, and stress on

families and caregivers. Parents of children with autism

experience more stress than parents of children with other

disabilities [10].

Though autism/PDD is a neurological disorder, is not

clear whether the neurological problems are primary in

nature or if another system is malfunctioning and negatively

impacting the neurological system. The possible involve-

ment of another system is evidenced by the biomedical

studies in autism/PDD that disclose a variety of abnormal-

ities, not only in the neurological system [11–16], but in the

immune system [17–19], and the digestive system as well

[20,21]. In addition, abnormal metabolic indicators have

been found [22,23]. The diversity of the biomedical findings
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and their variety of selection in different patients suggests

that persons with autism/PDD comprise a heterogeneous

population in regard to etiology [7,24,25].

Persons with autism also show heterogeneity in that they

appear to develop autistic symptoms at various points in

development. This paper discusses the neurological mech-

anisms that may be a part of the etiology in children that are

reported to have a developmentally normal period prior to

the onset of autistic symptoms. The selective vulnerability

of the cerebellar Purkinje cell is described, and how the

Purkinje cell vulnerability may play a role in the cause of

autism is discussed. Results of a small pilot survey are

discussed, as well as the current state of research in this area,

and possible future directions.

2. Autism: onset, parental reports, and possible

neurological basis

The onset of the abnormal growth and development

within the brain in autism is not known. Current thought by

experts in autism, such as Bauman et al. [26], is that the time

of onset of the neurological problems is prenatal, occurring

prior to 30 weeks gestation. Bauman et al. [26] stated that

the absence of gliosis (which will be defined and discussed

in a later section.) found in their autopsy study suggests that

the abnormalities occurred during early development.

However, autism comprises a heterogeneous population in

that parents report either that their child was abnormal from

birth, or that their child was developmentally normal until

sometime after birth, typically 15–24 months, at which time

the child began to regress or deteriorate [7,27,28]. Typically

reported is loss of verbal, nonverbal, and social abilities

[25,27]. Information provided by parents of children that

were developmentally normal until a later onset does not fit

with the current thought of the time of neurological onset of

autism as being prenatal in all cases. It is conceivable that

some of these children become autistic from neuronal cell

death or brain damage sometime after birth as result of

insult [29].

The most consistent neurological abnormalities found in

persons with autism is marked Purkinje cell loss in the

cerebellum (as determined by histopathological examin-

ation); and atrophy of the cerebellar folia (as determined by

in vivo neuroimaging) [11–16,30–33]. Of particular

clinical interest, research suggests Purkinje cells die

relatively easily compared to other types of neurons [34].

Several studies have shown that Purkinje cell loss can result

from insult, and in some cases be selectively vulnerable. For

example, Purkinje cells are selectively vulnerable to

ischemia (inadequate blood supply) [34,35]; hypoxia

(inadequate oxygen supply) [34,36]; excitotoxicity (e.g.

seizures, metabolic insufficiencies) [35,37–41]; G protein

dysfunction [42 – 44]; viral infections [45]; vitamin

deficiencies (e.g. thiamine) [37]; heavy metals (e.g.

mercury, lead, bismuth) [46–49]; toxins (e.g. bilirubin,

phenytoin, ethanol, alkaloids, toluene) [35,38,50,51]; as

well as from chronic malabsorption syndrome (e.g. celiac

disease, inflammatory bowel disease) [52–54].

The basic nature of neurons in regard to location,

function, and chemical makeup allows for a hierarchy of

neuronal vulnerability of selective neuronal populations.

Why the Purkinje cell may be susceptible to insult is

discussed in the next section.

3. Why is the Purkinje cell vulnerable?

The Purkinje cell is an exceptionally large (50–80 mm)

inhibitory neuron in the cerebellum that receives extensive

excitatory input from both parallel fibers (from granule

cells) and climbing fibers (from the inferior olivary nucleus)

[55]. Parallel fibers make about 200,000 connections on

each Purkinje cell and input from these neurons trigger

calcium influx [56]. Climbing fibers release glutamate or

aspartate at all levels of the soma and dendrites of the

Purkinje cell firing synchronously, forming one of the most

powerful connections in the nervous system [34,55–57].

The response of the Purkinje cell is a large action potential

followed by a high frequency of smaller action potentials

(complex spikes) that is associated with a calcium influx

that is unparalleled in the nervous system [55,56]. As a

result of the high level of excitatory amino acid synaptic

connections and the response of the Purkinje cell that is

mediated by voltage-gated and receptor-gated calcium

channels, the Purkinje cell has an exceptionally high

metabolic demand [34]. A high metabolic demand com-

bined with constant input from the inferior olive and large

amounts of calcium stores and influx, makes the cell

vulnerable [58,59]. Excessive rises in intracellular calcium

is associated with excitotoxicity, and can cause cell death

[60].

The current thought in autism is that Purkinje cell loss is

not due to cell death, but abnormal development during

gestation. The main reason for this assumption is, as

mentioned earlier, the absence of gliosis. Gliosis is

proliferation of neuroglial tissue that can follow neural

damage [61]. Nervous system damage as a result of insult

(e.g. metabolic insufficiencies, epilepsy, brain injury, toxins,

infarction, viral infection, ischemia, excitotoxicity, etc.) can

lead to neuronal death, neuronal degeneration, apoptotic cell

death, injury, cell loss, and gliosis [61]. However, there is

recent evidence of gliosis associated with Purkinje cell loss

in the cerebellum of some children with autism. This

evidence will be discussed in the next section.

4. Evidence of gliosis in some children with autism

The absence of gliosis reported in the autopsy study by

Bauman et al. [26], mentioned earlier, does not support the

theory that some of the abnormalities in autism are a result
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of insult after birth. However, some research studies in

autism support the theory of neural damage as a result of

insult in some children with autism. For example, absence

of gliosis is not a consistent finding on autopsy. A recent

autopsy report by Bailey et al. [15] found that the Purkinje

cell loss was sometimes accompanied by gliosis and an

increase in glial fibrillary acidic protein (GFAP). GFAP is

elevated in acute and chronic situations of nerve cell

damage [62]. The authors stated that the patchy glial cell

hyperplasia found in their study suggests the possibility of

postnatal loss of Purkinje cells. In addition, a study by

Ahlsen et al. [62] that examined the levels of GFAP in the

cerebrospinal fluid of children with autism, found GFAP to

be at three times the level of the control group. The authors

state that the results could implicate gliosis and unspecified

brain damage in children with autism [62].

Interestingly, Bauman et al. [63] reported that the

Purkinje cells were enlarged in the children, whereas the

cells were small and pale in the adults. The authors

theorized that the cellular enlargement was a result of a

compensatory mechanism. However, neuronal damage can

result in cell swelling, inflammatory reactive edema [61].

The selective vulnerability of the Purkinje cell and the

evidence that Purkinje cells are depleted in persons with

autism may suggest that the susceptibility of this neuron to

injury and death plays a role in the cause of autism. To

support this theory is anecdotal reports of some children

with autism that are developmentally normal until sometime

after birth, when they begin to regress or deteriorate. Results

of a small pilot survey on this matter are discussed in the

next section.

5. Parental survey results and the possibility of insult

In autism, anecdotal reports and some studies suggest

that often the period of deterioration and/or regression

observed in children with autism is marked by an illness or

significant physiologic event. Surveys completed during a

treatment study by Kern et al. [25] revealed that of the 20

children with autism or PDD in the study, only three

children (15%) were reported by their parents to be

abnormal from birth, while 17 (85%) were reported to

have deteriorated and/or regressed sometime after birth. Of

the 17 (85%) that were reported to have an onset after birth,

only two (12%) were reported to have no significant events

prior to the appearance of autistic features. In contrast, the

other 88% were reported to have significant events prior to

the appearance of autistic features. Two were reported to

have problems start at 2 months of age following meningitis.

Two were reported to have problems in the 8th and

9th month following onset of seizures (one after becoming

ill subsequent to immunizations). Eleven (85%) were

reported to have developed problems between 15 and

24 months; of these children, nine followed a significant

event (five after becoming ill subsequent to immunizations,

three after severe and prolonged fever and infection, and one

after febrile seizures with roseola). Two children (18%)

were reported to have an onset between 2 and 4 years (both

after becoming ill subsequent to immunizations). In

addition, four of the later onset children (15 months–

4 years) also had marked changes in bowel function at the

same time as the significant event with the development of

chronic and severe diarrhea.

Though the data is from a small population, some of

these findings can be shown in other research. For example,

other studies have shown that approximately one-third of

children that enter the autistic state by deterioration and/or

regression from a prior normal state of development are

reported to have developed seizures at the time of onset

[64]. Also, in a study by Wakefield et al. [65], children were

reported to have regressed following immunizations and

extreme changes in gastrointestinal function manifested by

chronic and severe diarrhea.

In addition, some studies suggest that these children have

been exposed to environmental or neurotoxins. For

example, blood lead levels in children with autism have

been found to be elevated [7]. Blood levels of aromatic

hydrocarbons, such as benzene, trimethylbenzene; triethyl-

benzene, ethylbenzene, trichloroethylene, styrene, toluene,

and xylene have been found to be elevated above toxic

levels [66]. Sources of aromatic hydrocarbons compounds,

commonly occurring in industrialized nations [67], could be

water, dry cleaning chemicals, indoor sources (e.g. new

home materials), kerosene stove, smoking, car engines, etc.

[68–70].

6. Current state of research in this area of autism

There has been to date, no comprehensive reports on the

incidence or of the types of events that precede this period of

deterioration/regression reported often by parents. Nor has

there been any investigation into the possible underlying

relationships or possible common denominators to these

precursors. The research on this issue of onset is very

limited. One reason for the lack of investigation into these

reports is that the information from parents is considered to

be unreliable [71]. Though many parents report a devel-

opmentally normal period prior to deterioration and/or

regression, it is assumed that the information is incorrect

[71]. Interestingly, though parental reports on the issue of

incidence prior to the development of autistic symptoms is

assumed to be unreliable, several studies have shown that

parental concerns about speech and language development,

behavioral and developmental issues are highly sensitive

[72–74] and reliable for early developmental screening

[75].

Reports of incidence prior to the onset of autism have not

been investigated, and the cause of autism remains elusive.

Considering that parental reports of incidence prior to the

onset of autism have not been investigated, and the cause of
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autism remains elusive, assuming that the information from

parents of children with autism is unreliable and not worth

investigating may not be good science. Better science may

be to not assume, but to investigate all reasonable leads.

7. Cerebellar impairment and autism

An argument against this theory is that some persons

with cerebellar damage do not develop autism. A reason for

this may be that multiple parameters play a role in the

development of autism, such as onset of pathology in

relation to age and stage in development, as well as the

function of the areas of neuropathology in the cerebellum,

and their relationship with the rest of the brain. Autism

comprises a combination of social, language, and cognitive

deficits [6]; thus, a combination of areas of pathology may

be important. The cerebellum has vast interconnections with

the cerebral cortex and other parts of the brain, and evidence

suggests that the cerebellum modulates and coordinates

different functions throughout the brain [76]. Certain areas

of the cerebellum are involved in functions that are found to

be abnormal in autism [11,77]. For example, the cerebellum,

particularly the vermis, has been shown to modulate

(inhibit/disinhibit) sensory input at the level of the brain

stem, thalamus, and cerebral cortex [78]. Stimulation of the

vermis can cause hypersensitivity to touch and sound [79].

Persons with autism sometimes over- or under-respond to

sensory stimuli, and can be hypersensitive to stimuli [6,80].

Multimodal sensory neurons (auditory, visual, somatosen-

sory) from the superior colliculus (SP) project to the vermis,

and the vermis has projections back to the SP, indicating a

multisensory feedback loop [77]. Persons with autism

sometimes have issues of multimodel sensory integration,

and show evidence of a lack of central coherence of sensory

information [8]. A feedback loop has also been found

between the cerebellum and the septal-hippocampus, an

area thought to be important in emotional behavior,

suggesting a role of the cerebellum in affectual components

in autism [81]. The right cerebellum has been shown to

work with the left frontal and anterior cingulated areas in

word generation tasks [82]. Lesions of the right cerebellum

result in problems in word selection and production [83].

Lesions of the vermis can result in dysarthria and abnormal

speech rhythm [84]. A main feature in autism is impairment

in communication, which can range from being nonverbal to

a delay in the acquisition of the spoken language and

abnormal speech (abnormal pitch, intonation, rhythm, and

rate) [6]. The cerebellum has been shown to have

interconnectivity with areas involved with attention, gaze

control, and control of head and eye movement (reticular

formation, SC, dorsolateral prefrontal cortex, posterior

parietal cortex, pulvinar) [85,86]. Persons with autism can

have difficulty with gaze; they may stare into space, avoid

eye contact, or look at objects from unusual angles [87].

Those same areas are involved in the shifting of attention.

Persons with autism can have difficulty with shifting of

attention, and can become fixated with certain stimuli, while

ignoring more important (even dangerous) ones [8].

Current evidence suggests that the cerebellum is used to

integrate and modulate information (sensory and motor) to

help us interpret and respond to our world [76], and that

once a process is familiar, the less the cerebellum is

involved [88]. Activation of the cerebellum peaks when

performance is naı̈ve; once a process is automatic, the

cerebellum is not involved [83]. Recent evidence suggests

that the cerebellum is involved in the memory storage

process in associative learning (of discrete behavioral

responses) [89]. It may be that the role of the cerebellum

in associative learning is pivotal. Once learning has

occurred and the connections formed in other parts of the

brain, the effect of cerebellar function may diminish,

making normal function of the cerebellum critical during

the early stages of development and less so as a person ages.

Thus, the point of pathological dysfunction of the

cerebellum during development may be a key factor in the

development of autism.

8. Conclusion

Neurons come in a variety of shapes and sizes, but more

importantly with different biochemical compositions and

requirements. The variety in the basic nature of neurons in

regard to location, function, and chemical makeup allows

for a hierarchy of neuronal vulnerability of selective

neuronal populations to a variety of insults [36]. It has

been shown that Purkinje cells can be selectively vulnerable

to certain types of insult [34,36]. It has also been shown that

Purkinje cell loss is a consistent finding in the autistic

disorder [15]. In the recent autopsy report of six people with

autism by Bailey et al. [15], the authors stated that in regard

to timing of onset it would be premature to conclude that

any single developmental event led to these findings, that

some signs were suggestive of a developmental basis and

yet other factors influencing neuronal cell survival also

seem to be important. Anecdotal reports suggest that some

children with autism have significant physiological events

that could result in neuronal insult prior to the development

of autistic symptoms, yet these reports have not been

investigated.

Due to the dramatic rise in the incidence of autism in the

last 10 years, a meaningful effort needs to be made in the

understanding of the cause of autism and the factors that

influence its occurrence. A future direction in autism

research may need to include a novel tact, and investigate

the possibility of neuronal cell loss from insult as a cause of

autism. One approach is through clinical studies that

investigate parental reports and the clinical aspects

associated with autism. In addition, basic research can

examine this issue further through histological examination,

and through models.
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