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Studies in both humans and in animal models of specific disorders suggest that polymorphisms of
multiple genes are involved in conferring either a predisposition to or protection from autoimmune
diseases. Genes encoding polymorphic proteins that regulate immune responses or the rates and
extent of metabolism of certain chemical structures have been the focus of much of the research
regarding genetic susceptibility. We examine the type and strength of evidence concerning genetic
factors and disease etiology, drawing examples from a number of autoimmune diseases. Twin
studies of rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), type diabetes, and
multiple sclerosis (MS) indicate that disease concordance in monozygotic twins is 4 or more times
higher than in dizygotic twins. Strong familial associations (odds ratio ranging from 5-10) are seen in
studies of MS, type diabetes, Graves disease, discoid lupus, and SLE. Familial association studies
have also reported an increased risk of several systemic autoimmune diseases among relatives of
patients with a systemic autoimmune disease. This association may reflect a common etiologic
pathway with shared genetic or environmental influences among these diseases. Recent
genomewide searches in RA, SLE, and MS provide evidence for multiple susceptibility genes
involving major histocompatibility complex (MHC) and non-MHC loci; there is also evidence that
many autoimmune diseases share a common set of susceptibility genes. The multifactorial nature of
the genetic risk factors and the low penetrance of disease underscore the potential influence of
environmental factors and gene-environment interactions on the etiology of autoimmune diseases.
Key words: autoimmune diseases, gene-environment interactions, genetics, major histocompatibility
complex, multiple sclerosis, rheumatoid arthritis, systemic lupus erythematosus, type diabetes
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Autoimmune diseases include a wide variety of
conditions with differing clinical presentations,
natural histories, and treatment options. A
common underlying feature of both organ-
specific and systemic forms of these diseases is
that the immune system's ability to respond
appropriately to self-tissues is altered, resulting
in the production of B- and T-cell responses
directed against self-antigens (autoimmunity).
The mechanism through which autoimmunity
progresses to produce pathology (an autoim-
mune disease) is not understood. Studies in
both humans and in animal models of specific
disorders suggest that polymorphisms of multi-
ple genes are involved in conferring either a
predisposition to or protection from autoim-
mune diseases (1,2). It is important to note
that these are common genetic polymorphisms
present in 5% or more of the population
rather than rare disease-causing mutations such
as those involved in cystic fibrosis or galac-
tosemia. This suggests that these genes may
have served some selective advantage during
human evolution. The multifactorial nature of
the genetic risk factors and the low penetrance
of disease underscore the potential influence of
environmental factors on etiology.

Recent reviews of genetic aspects of specific
autoimmune diseases have been published
(3-7). In this summary, we examine the type

and strength of evidence concerning genetic
factors and disease etiology, drawing exam-
ples from systemic (e.g., rheumatoid arthritis
[RA], systemic lupus erythematosus [SLE])
and organ-specific (e.g., type I diabetes, mul-
tiple sclerosis [MS]) diseases. Our focus is on
evidence from studies in humans, and a par-
ticular emphasis is placed on issues relating to
gene-environment interaction and issues
affecting the interpretation of evidence and
design of future studies.

Potential Genetic Influences
on Autoimmune Diseases
Evolutionary forces have resulted in the
development in mammals of a complex
array of genes beyond those encoding
monomorphic proteins involved in basic
metabolic processes found in prokaryotes
and simpler vertebrates. Among the evolu-
tionarily recent genes are those that encode
either polymorphic proteins that regulate
immune responses (immunogenetic loci) or
the rates and extent of metabolism of certain
chemical structures (pharmacogenetic loci). It
is thought that environmental exposures, pri-
marily in the forms of infections and toxic
agents, have shaped the types and functions
of this diverse array of genes. Presumably
similar evolutionary forces have resulted in

different distributions of polymorphisms in
different ethnic groups. This creates signifi-
cant challenges to the proper design of popu-
lation-based studies requiring appropriately
matched control groups.

Inmune Regulation Genes
Omnunogenetic Loci)
Immunogenetic loci encode the major
histocompatibility complex (MHC) class I
and II proteins, as well as complement
components, immunoglobulins, cytokines/
chemokines and their receptors, transporters
associated with antigen processing genes,
T-cell receptor genes, and minor histocom-
patibility markers. The MHC genes are
located on chromosome 6 in humans, and
the class I (A, B, C) and II (DR, DQ, DP)
genes are highly polymorphic (Figure 1).
Class I and II molecules (human leukocyte
antigens [HLA]) comprise a light chain and a
heavy chain that combine to form a peptide-
binding site; the bound peptide is then pre-
sented to T-cell receptors. Differences in
amino acid sequence can produce differences
in the shape of the binding site and thus dif-
ferences in binding affinity. Some of the alle-
les of the MHC (e.g., Al-B8-DR3) are in
strong linkage disequilibrium (8). Linkage
disequilibrium arises when alleles of different
genes occur together more frequently than
would be expected if random assortment were
taking place during meiosis; the shorter the
distance between genes on a chromosome,
the greater the chance that linkage will occur.
The class III MHC includes molecules
involved in antigen recognition (heat-shock
proteins), inflammatory responses (the
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Figure 1. Genes of the human major histocompatibility complex, located on the short arm of chromosome 6.
Abbreviations: HSP, heat shock protein; PRL, prolactin, TAP, transporters associated with antigen processing; TNF,
tumor necrosis factor. Class (A, B, C) and class 11 genes (DR, DO, DP), shaded in grey, comprise the human leukocyte
antigens. These molecules can be expressed on most cells, bind to peptides, and present the bound peptide to T-cell
receptors. Other immune-regulating genes are shaded white: TAP, complement components (C4B, C4A, Bf, C2), HSP,
TNF. Genes with nonimmunologic functions are shaded in black: collagen (COLilA), 21a- and 21 i-hydroxylase
(CYP21 and CYP21 P, respectively), and PRL.

complement proteins), and macrophage
activation (tumor necrosis factor [TNF]) (9).
Other cytokines that are not encoded by the
MHC play important roles in stimulating T
cells and B cells (e.g., interleukin [IL]-2, IL-6,
IL-12, interferons) and therefore could be
involved in autoimmune responses. Genetic
variability in the structure of immunoglobu-
lins (immunoglobulin allotypes) and T-cell
receptors can also influence immune respon-

siveness to self-antigens and foreign antigens.
Prolactin may also have important

immune-modulating influences affecting the
risk of autoimmune disease (10). The pro-
lactin gene is located close to the MHC
region of chromosome 6, and Brennan et al.
(11) recently reported associations between
genetic markers close to the prolactin gene
in SLE patients who also had DRB1*0301
and in RA patients who had DRB1*0401.
Thus, linkage disequilibrium may occur

between the class I, class II, and class III
genes of the MHC and also between the
MHC genes and other nearby genes that are

not directly involved in immune regulation.
Linkage disequilibrium between TNF-a and
DRB may explain the conflicting results
from studies of TNF-a polymorphisms,
DRB alleles, and either the incidence or

clinical presentation ofRA (12-15).

Metabolism Genes
The metabolism of drugs, chemicals, and
dietary constituents can require several differ-
ent steps involving oxidation (sometimes
referred to as phase I) and conjugation of
oxygenated (electrophilic) intermediaries into
hydrophilic compounds that are more easily
excreted (phase 2). Oxidation enzymes

include cytochrome P450 enzymes (e.g.,
CYPlAI, encoding arylhydrocarbon hydrox-
ylase, and CYP2D6, encoding debrisoquine
hydroxylase), myeloperoxidase, alcohol dehy-
drogenase, and aldehyde dehydrogenase.
Glutathione S-transferase, epoxide hydrolase,

sulfotransferase, and N-acetyltransferase
(NAT) can act as phase II enzymes (16-18).
The liver is the primary site of metabolism of
drugs and other compounds, but additional
steps can occur in the bladder, lung, colon,
and other tissues. One of the isoforms of
NAT, NAT-1, is present in leukocytes (19),
and myeloperoxidase is present in neu-

trophils (20). The toxicologic or carcino-
genic activity of the metabolites along a

pathway varies; conjugated compounds are

generally but not always less reactive.
Polymorphisms in many of these enzyme-

encoding genes have been reported. These
polymorphisms result in relatively slow and
fast metabolism phenotypes, resulting in dif-
ferences in exposures to the parent com-

pound and to specific metabolites.
Polymorphisms in receptor genes such as the
aromatic hydrocarbon receptor gene may

also influence metabolic activity (17).

Much of the work with respect to
metabolism has focused on drug-induced
lupus. Drug-induced lupus shares some of the
clinical and autoantibody features of SLE but
differs in other respects. These syndromes are
unintended outcomes of many commonly
used drugs such as procainamide, hydralazine,
isoniazid, and penicillamine (21,22). One
important aspect of drug-induced lupus is
that the condition most often resolves
after the medication is discontinued (23).
N-Acetyltransferase activity has been associ-
ated with the development of drug-induced
lupus, with slow acetylation conferring higher
risk for developing specific autoantibodies or
other features of this condition (24,25).

Studies of NAT activity in idiopathic
(non-drug-induced) SLE have found little
evidence of an association (26-29). These
studies used a phenotypic assessment ofNAT
activity based on a dapsone challenge rather
than polymerase chain reaction-based tech-
niques that can identify the genotype for each
of two NAT isoforms (NAT-1 and NAT-2).
Only one of these studies also assessed expo-
sure to aromatic amines (from dark hair dyes
and from smoking) (29).

The cytochrome P450 enzyme system is
involved in the conversion of cholesterol into
the various metabolites of testosterone and
estradiol (30,31). The microsomal enzyme
aromatase converts androgens to estrogens
(androstenedione to estrone and testosterone
to estradiol), and is encoded by CYP19 (Figure
2). The C2 hydroxylation and Cl6a hydroxy-
lation of estrone involves other P450-mediated
pathways (CYP1A2, possibly CYP3A4), and
the C16a-hydroxylated compounds have
greater estrogenic potential than the catechol
metabolites (31,32). Genetic polymorphisms
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Figure 2. Major pathways of estrogen and androgen metabolism. The systematic name of enzymes encoded by
cytochrome P450s (CYP followed by a number) are given, with common enzyme names in parentheses.
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and inducibility by specific medications,
dietary components, and environmental
contaminants may influence the activity of
various P450 enzymes (31,33). Although there
are no studies of predisease hormone levels and
SLE risk, reduced androgen levels have been
reported in male and female SLE patients
(34), and Lahita et al. (35) reported increased
16a hydroxylation of estradiol in SLE patients
and their relatives compared to controls.

It is important to note that there are
multiple steps in most metabolic processes
that involve different enzymes and different
genes. Determining the overall significance
of variation of one enzyme in a system
requires consideration of all the steps, partic-
ularly with respect to possible rate-limiting
steps, in the pathway. There may be factors
that affect variation within pathways
(inducibility of enzymes), and there also may
be competing pathways involving different
enzymes. Thus, metabolism of exogenous
and endogenous compounds is an important
potential source of variability in risk for
autoimmune diseases, but its full importance
is not yet understood.

Evidence for Genetic Factors
in the Etiology of Autoimmune
Diseases
Twin Studies
Studies of concordance in monozygotic (MZ)
and dizygotic (DZ) twins provide one line of

evidence concerning the contribution of
genetics to the onset, presentation, or severity
of disease. Table 1 summarizes twin studies
for several autoimmune diseases (36-52). For
each, disease concordance in MZ is much
higher than in DZ twins. MZ twins are genet-
ically identical, but DZ twins share on average
only 50% of genes in common, thus the
greater disease concordance in MZ twins sug-
gests a strong influence of genetic factors on
disease susceptibility. It should be noted, how-
ever, that stochastic events and environmental
exposures alter the immune system and its
response over a lifetime, so that MZ twins are
not identical for long in terms of their specific
immunocyte distributions and receptors. The
concordance in MZ twins is higher for type I
diabetes (mean pairwise concordance across
studies, 30.1%) than for SLE, MS, Graves dis-
ease, or RA. This pattern may reflect a greater
role of genetic susceptibility in early-onset
compared with later-onset diseases. However,
twins are more likely to share environmental
exposures (e.g., diet, infectious diseases) as
children than as adults. The higher concor-
dance among DZ twins for type I diabetes
(6.8% for pairwise concordance) than for
older-onset diseases (< 3.5%) may also reflect
the influence of shared environment.

Familial Association Studies
Several studies have compared disease
incidence or prevalence among relatives of
patients with autoimmune diseases to the dis-

ease frequency among relatives of a selected
control group or to estimates from the gen-
eral population. Table 2 summarizes data
from studies of first-degree relatives (i.e., par-
ents, siblings, and children) (53-69). MS
shows a strong familial association. Although
the risk of MS occurring in first-degree rela-
tives of MS patients is low (< 5%), it is much
higher than that in the general population
(< 0.5%). Strong associations (odds ratio
ranging from 5-10) are also seen in studies of
type I diabetes, Graves disease, discoid lupus,
and SLE. The familial association with RA is
weaker (odds ratio < 2) in two of the studies
that validated the RA diagnosis of relatives by
physical examination or medical record
review. The validation of diagnosis is impor-
tant, as the false-positive reporting of a his-
tory of RA may be high (> 50%) for both
self-reports (70) and proxy reports (71).

Several studies also examined the familial
association with other diseases (both autoim-
mune and nonautoimmune diseases) (Table
2). There is some evidence for a weak associa-
tion (odds ratio - 2.0) between type I diabetes
and a history of type II diabetes in first-degree
relatives. It may be difficult to correctly clas-
sify diabetes type on the basis of limited ques-
tionnaire data, however, so this association
may reflect misclassification. Although no
familial association with other autoimmune
diseases was reported in a study of MS
patients (56), four studies of relatives of
patients with a systemic autoimmune disease

Table 1. Studies of disease concordance in twins.

Disease Mean onset Monozygotic concordance (%)a Dizygotic concordance (%)a
study (ref) Location Design (age) n Pairwise Probandwise n Pairwise Probandwise

Type DM
Kyvik et al. (36) Denmark National twin registry 16 26 38.5 53.0 69 5.8 11.0
Kaprio et al. (37) Finland National twin registry NR 23 13.0 23.1 81 2.5 4.8
Kumar et al. (38) North America Volunteer twin registry 13 132 28.8 44.7 86 11.6 20.8
Matsuda and Kuzuya (39) Japan Physician survey 1 1 19 47.4 64.3 13 7.7 14.3
Olmos et al. (40) United Kingdom Patient survey NR 49 30.6 46.9 0 - -

(30.1) (45.5) (6.8) (12.5)
MS

Kinnunen et al. (41,42) Finland National twin registry 27 11 9.1 16.7 10 0.0 0.0
Mumford et al. (43) United Kingdom Physician survey NR 44 25.0 40.0 61 3.3 6.3
Sadovnick et al. (44) Canada Patient survey 30 26 30.8 47.1 43 4.7 8.9
Ebers et al. (45)
FRGMS (46) France Patient survey 29 17 5.9 11.1 37 2.7 5.3

(21.4) (34.2) (3.3) (6.4)
Graves disease

Brix et al. (47) Denmark National twin registry 39 18 22.2 36.4 33 0.0 0.0
SLE

Jarvinen et al. (48) Finland National twin registry NR 9 11.1 20.0 10 0.0 0.0
Deapen et al. (49) North America Volunteer twin registry 28 45 24.4 39.3 62 1.6 3.2

(22.2) (36.1) (1.4) (2.7)
RA

Aho et al. (50) Finland National twin registry 45 73 12.3 22.0 173 3.5 6.7
Silman et al. (51) United Kingdom Volunteer twin registry 38 91 15.4 26.7 112 3.6 6.9
Bellamy et al. (52) Australia Volunteer twin registry 39 14 21.4 35.3 9 0.0 0.0

(14.6) (25.4) (3.4) (6.6)

Abbreviations: DM, diabetes mellitus; FRGMS, French Research Group on Mutiple Sclerosis; MS, multiple sclerosis, n, number of twin pairs; NR, not reported; RA, rheumatoid arthritis; ref, reference; SLE,
systemic lupus erythematosus. Pairwise concordance calculated as number of concordant pairs divided by total number of pairs; probandwise concordance calculated as 2 times the number of concordant
pairs divided by the sum of the number of discordant pairs plus 2 times the number of concordant pairs. Values in parentheses are weighted mean for each disease, with weights equal to number of pairs
in each study.
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Table 2. Studies of familial associations with autoimmune diseases in first-degree relatives.

Disease Design, data source,a Familial association Familial association
study (ref) Location number of patients with same diseaseb with other diseasesb

Type DM
Altobelli et al. (53) Italy CC, Q (parents), 136 4.0(1.610.2) Type II DM: 1.6(0.92-2.8)
Dahiquist et al. (54) Sweden CC, Q (parents), 339 7.8 (3.6-16.8) Type It OM: 2.1 (0.35-14.3)
Cederholm and Wibell (55) Sweden CC, Q (patients), 161 7.0 (4.2-11.9) Type II DM: 2.5 (1.4-4.4)

MS
Midgard et al. (56) Norway CC, 0 (patients), 155 12.6 (1.7-552) Autoimmune diseases:c 1.2 (0.81-1.7)
Robertson et al. (57) United Kingdom Cohort, exams, 674 9.2 NR
Sadovnick et al. (58) Canada Cohort, exams, 815 30-50 NR

Graves disease Serbia CC, Q (patients), 100 7.2(0.85-60) NR
Jankovi et al. (59)

Discoid lupus United Kingdom CC, exams, 37 7.2 (2.9-17.6) SLE: 8.9 (1.3 99)
Lawrence et al. (60)

SLE
Strom et al. (61) United States CC, G (patients), 195 2.0 (0.6-7.0) Autoimmune diseases:d2.3 (1.2-4.6)
Nagata et al. (62) Japan CC, Q (patients), 282 NR Autoimmune diseases:e 5.2 (1.1-25)
Lawrence et al. (60) United Kingdom CC, exams, 36 3.5 (2.2-142) NR

RA
Koumantaki et al. (63) Greece CC, Q (patients), 126 4.4 (1.7-11.1) NR
Jones et al. (64) United Kingdom CC, exams, 207 1.6 (0.3-8.7) NR
del Junco et al. (65) United States Cohort, records, exams, 78 1.7 (1.0-2.9) NR
Lin et al. (66) United States CC, records, 29 15.5 (2.0-122) Autoimmune diseases:' 3.6 (1.2-14.5)

RA and others:f1 1.4 (2.5-47)
Myositis United States CC, 0 (relatives), 21 NR Autoimmune diseases:9 7.9 (2.-21.9)

Ginn et al. (67)
Systemic sclerosis Greece CC, 0 (patients), 166 NR Cancer: 3.8 (2.2-6.7)

Sakkas et al. (68)
Sjogren syndrome United Kingdom CC, Q (patients), 42 1.9 (p< 0.01) Clinical thyroid disease: 6.6 (3.5-12.3)

Foster et al. (69) Autoimmune diseases:h 2.5

Abbreviations: CC, case-control; DM, diabetes mellitus; MS, multiple sclerosis; NR, not reported; 0, questionnaire or interview; RA, rheumatoid arthritis; ref, reference; SLE, systemic lupus erythematosus.
'Questionnaire or interview asked either of patients or of their relatives; exams = physical examination of relatives reported to have the disease of interest; records = medical record review of relatives
reported to have the disease of interest. bOdds ratio or risk ratio and 95% confidence interval or p-value. eRA, psoriasis, goitre, DM. dRA, inflammatory bowel disease, SLE, and other autoimmune dis-
eases. 'Collagen diseases, including SLE. fAutoimmune thyroid disease, Type DM, rheumatic fever, ankylosing spondylitis, myasthenia gravis. #Includes autoimmune thyroid disease, RA, Type DM, pso-
riasis, Sjogren syndrome, pernicious anemia, Takayasu arteritis, ulcerative colitis, hemolytic anemia, dermatomyositis, idiopathic thrombocyptopenic purpura, and other autoimmune diseases. kType DM,
RA, pernicious anemia, SLE. Statistical significance not reported; odds ratio based on 7 cases in 140 relatives of probands compared to estimated population prevalence of 2%.

(SLE, RA, myositis, or Sjogren syndrome)
(61,66,67,69) reported an increased risk of
other autoimmune diseases (the definition of
which varied between studies but that
included SLE, RA, and thyroid disease). This
association may reflect a common etiologic
pathway with shared genetic or environmental
influences between these diseases.

Two studies have shown familial links
between autoimmune diseases and cancer.
One examined family history of cancer among
patients with systemic sclerosis and found an
odds ratio of 3.8 (95% confidence interval
[CI], 2.2-6.7) (Table 2) (68). The other
examined family history of autoimmune dis-
eases among patients with multiple myeloma;
the odds ratio for any reported autoimmune
disease (e.g., RA, SLE, and pernicious anemia)
was 3.0 (95% CI, 1.3-7.1) (72). These obser-
vations raise the possibility ofcommon patho-
genic mechanisms involving cancer and
autoimmune diseases, such as dysregulation of
apoptosis and detoxification pathways.

Gene Association Studies
Gene association studies compare the frequency
of a specified genetic marker (measured
through either phenotypic assays or genotyp-
ing) in patients and in a control group. Much
of the work with respect to autoimmune

diseases has focused on the MHC genes. One
complication in the design and interpretation
of these studies, however, is the degree of
ethnic variability in the prevalence of specific
MHC alleles. Ethnicity in this context refers
not to broad racial groups but rather to much
smaller groups defined by specific historical,
migration, and sociocultural patterns. This is
particularly problematic in geographic areas
that have been the destination of significant
immigration. Another complication is the
degree of linkage disequilibrium between the
genes of the MHC, which may obscure the
identification of the effects of specific genes,
particularly in early studies that relied on sero-
logic measures of antigens (e.g., DR2 or DR3).
Examples of gene association studies in SLE
that address ethnicity are shown in Table 3
(73-78). The studies by Schur et al. (75) and
Goldstein and Sengar (76) analyzed ethnic
groups within broad racial categories (e.g.,
French Canadian and non-French Canadian).
Both reported evidence of different associa-
tions among different ethnic groups, although
the small sample size in the Goldstein and
Sengar study resulted in variable estimates that
make it difficult to definitely interpret the
observed differences.

The selection of controls in population-
based gene association studies is very

important, as it may be difficult to adequately
account for genetic admixture of the popula-
tion. Alternative designs such as gene
association analyses using case-parent triads
avoid this problem and do not require
assumptions about type of inheritance or dis-
ease penetrance (8,79) that are needed in
other analytic approaches.

Pedigree Studies: Segregation Analysis,
Link Analysis, and Genome Scaithes
Segregation analysis is the first step in
identifying the relation between an individual's
genotype and the resulting phenotype (80).
Using appropriate statistical methods, one
compares the inheritance of the disease
within families with that expected under spe-
cific models. The models may evaluate
a) whether there is a single major gene
responsible for the autoimmune disease,
b) whether the susceptibility to the disease is
controlled by many genes (polygenic inheri-
tance), and c) the environmental transmis-
sion model. The model that is most
compatible with the observed family data is
adopted. Identification of a major gene does
not mean that it is the only gene responsible
for the disease; rather, its effect is large enough
to be discernible from those of the other genes
implicated in the etiology of the disease.
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Table 3. Case-control studies of major histocompatibility complex associations with SLE in two or more ethnic groups.

Controls Patients
Gene Percent Percent Odds ratio (95%
study (ref) Population Source n positive n positive confidence interval)
C4A null

Howard et al. (73)a United States, blacks Blood donors 35 7 35 20 3.3 (1.0-12.2)
United States, whites Blood donors 63 10 63 25 3.2(1.5-7.1)

Dunckley et al. (74)a Australia, whites Blood donors 197 17 63 32 2.3 (1.4-3.7)
Chinese Unspecified 76 19 75 30 1.9 (1.1- 3.3)
Japanese Unspecified 50 12 51 35 3.8 (1.8-8.5)

Schur et al. (75)b United States, English/Irish Non-SLE relatives 144 22 27 41 2.5 (0.97-6.5)
United States, other whites Non-SLE relatives 310 12 62 11 0.94 (0.34-2.3)

Goldstein and Sengar (76)a Quebec, French University employees 44 6 43 12 2.2 (0.64-8.5)
Quebec, non-French University employees 36 10 43 31 4.3 (1.6-11.7)

Reveille et al. (77)C United States, blacks Blood donors 73 20 88 20 0.99 (0.43-2.3)
United States, Hispanics Blood donors, university employees 119 13 68 19 1.6 (0.67-3.9)
United States, whites Unspecified 186 20 69 30 1.8 (0.90-3.5)

DR3
Howard et al. (73)d United States, blacks Blood donors 35 26 35 31 1.3 (0.41-4.3)

United States, whites Blood donors 63 25 63 38 1.8(0.79-4.2)
Schur etal. (75)b United States, English/Irish Non-SLE relatives 144 19 27 41 2.9(1.1-7.4)

United States, other whites Non-SLE relatives 310 10 62 16 1.7 (0.74-4.0)
Goldstein and Sengar (76)e Quebec, French University employees 43 12 43 23 2.4(0.65-9.6)

Quebec, non-French University employees 35 20 43 58 5.6 (1.8-17.8)
Reveille et al. (77)f United States, blacks Blood donors 88 14 88 14 1.0 (0.39-2.6)

United States, Hispanics Blood donors, university employees 105 9 70 20 2.7 (1.0-7.2)
United States, whites Unspecified 200 25 67 51 3.1 (1.7-5.7)

TNF-a-238A
Rudwaleit et al. (78)g United Kingdom, whites Blood donors 96 9 49 2 0.20 (0.00-1.5)

South Africa, blacks Unspecified 81 19 49 24 1.4 (0.56-3.7)
TNFa-r3mA

Rudwaleit et al. (78)h United Kingdom, whites Blood donors 96 28 49 47 2.3 (1.0-4.9)
South Africa, blacks Unspecified 81 35 49 27 0.68 (0.29-1.6)

Abbreviations: n, number; ref, reference; SLE, systemic lupus erythematosus; TNF, tumor necrosis factor. JGene frequency, based on phenotypic measurement; total number used in calculations is equal to
twice the number of patients. hAllele frequency, based on phenotypic measurement; total number used in calculations is total number of haplotypes. cAllotype frequency; based on phenotypic measure-
ment; total number used in calculations is number of patients. dSerologic measurement of DR3; total number used in calculations is number of patients. 0DR3(17) specificity based on analysis of restriction
fragment length polymorphisms; total number used in calculations is number of patients. fDR3*0301 allele frequency; total number used in calculations is number of patients. 'Frequency of TNF-cr238, the
G to A substitution at the -238 postition of the promotor region of TNF-a, which results in the TNF-A variant. *Frequency of TNF-ae3-8, the G to A substitution at postition -308 of the promotor region of
TNF-a, which results in the TNF-2 variant.

Recently, more powerful methods of segrega-
tion analyses, called complex segregation
analyses, have been developed (81). These can
be applied to both quantitative and qualitative
traits and can elucidate complex patterns of
genetic/environmental transmission.

An early segregation analysis involving 18
selected kindreds suggested that autoimmu-
nity is controlled by a single autosomal domi-
nant gene (82). The postulated major
autoimmune gene has not been mapped, but
in two studies of familial patterns of auto-
immune diseases, linkage to HLA or genetic
markers of human immunoglobulin gamma
or kappa chain (GM and KM) allotypes was
excluded (82-84). Recent investigations are
more consistent with the belief that auto-
immunity is polygenetic (1). Development of
specific autoantibodies or an autoimmune
disease may depend on the epistatic interac-
tions of autoimmunity-predisposing genes
and environmental factors.

Linkage implies cosegregation of alleles at
two different loci. Linkage of a marker locus
and a disease provides much stronger evi-
dence for a substantial genetic component in
the etiology of the disease than that provided
by segregation analysis. It is important to

remember that the association analysis dis-
cussed in the previous section specifies a
relationship between an allele and a disease,
whereas linkage denotes a close physical
localization of a marker locus and the puta-
tive locus for the disease. Loci are linked but
not their alleles (unless there is linkage
disequilibrium/allelic association). In other
words, the marker allele segregating with the
disease may be different in different families.

Different analytical strategies have been
developed that take advantage of information
provided by genetic markers in families of
individuals affected by autoimmune diseases.
These linkage approaches include the log-
odds score method, the affected-sibpair
method, the affected-pedigree-member
method, the variance component method,
and linkage disequilibrium-based approaches
(80,85-87). Each of these has intrinsic
advantages and disadvantages, and the choice
best suited for a given study depends upon
many factors, including the epidemiology of
the disorder investigated, the state of knowl-
edge about the nature and frequencies of
genetic risk factors and linked loci, and the
resources available. All of these approaches
are efficient in defining genetic linkages for

well-defined monogenic traits when large
numbers of individuals are available for analy-
ses. They have limitations, however, when
applied to rare, complex disorders in which
multiple genes, or gene-environment interac-
tions are likely to play pathogenic roles. It has
been suggested that family-based association
studies (e.g., case-parent triad designs)
employing a large number of candidate genes
are more powerful than other approaches in
dissecting the genetic contribution to such
disorders (88).

Until recently most linkage and
association analyses in autoimmune diseases
studied candidate genes coding for HLA,
the T-cell receptor, GM and KM allotypes,
the complement components, and other rel-
evant proteins. Now, with the availability of
very polymorphic microsatellite markers
scattered throughout the genome, one can
search the entire genome for autoimmunity
genes without knowledge of their mode of
inheritance or function. Genomewide
searches in RA, SLE, and MS provide evi-
dence for multiple susceptibility genes
involving MHC and non-MHC loci
(89-93). A recent comparison of the linkage
results from 23 published genomewide scans
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Table 4. Immunogenetic interactions with selected environmental exposures in autoimmune diseases.

Gene frequency Odds ratio (95%
Phenotype, genotype, Gene frequency in exposed confidence limits)

Disease, environmental exposure (ref) or haplotype in controlsa patientsa or p-value
Drug-induced lupus, hydralazine

Batchelor et al. (94) DR4 (P) 37/113 (33) 19/26 (73) 5.6(2.0-16.2)
Brand et al. (95) DR4 (P) 41/140 (29) 5/15 (33) 1.2(0.30-4.2)
Russell et al. (96) DR4 (P) NR (33) 14/20 (70) p< 0.02
Speirs et al. (97) DR4 (P) 31/81 (38) 14/21 (67) 3.2 (11-10.1)

C4A or C4B null (P) 35/82 (43) 16/21 (76) 4.3 (1.3-16.2)
Toxic oil syndrome, contaminated rapeseed oil

Vicario et al. (98) DR3 or DR4 (P) 18/63 (28) 21/39 (54) 2.9 (1.2-7.3)
Eosinophilia myalgia syndrome, [-tryptophan

Varga et al. (99) B7 (P) NR/NR (19) 5/10 (50) NS
Kaufman et al. (100) DR4 (P) 12/30 (40) 12/22 (54) 1.8 (0.51-6.4)
Oursler et al. (101) DR3 or DR4 (P) NR/1 094 (NR) 7/9 (78) NS

A1-88-DR3 (H) NR/1 094 (NR) 3/9 (33) p= 0.02
B7 (P) NR/1094 (NR) 2/9 (22) NS

Chronic lyme arthritis, Borellia burgdorferi
Steere et al. (102) DR4 (P) 27/86 (31) 16/28 (57) 2.9 (1.1-7.7)

DR4 or DR2 (P) 46/86 153) 25/28 (89) 7.3(2.0-40)
Ruberti et al. (103) DRB1*1301 (G) 21/266 (8) 3/20 (15) 2.3(0.40-9.2)

DPB1*0201 or *1001 (G) 26/266 (10) 8/20 (40) 6.2 (2.1-18.1)
Abbreviations: G, genotype; H, halotype; NR, not reported; NS, not significant; P, phenotype; ref, reference. &Number positive/total (percent positive).

of human and animal model autoimmune or
immune-mediated disease has been
published (1). This review found that
approximately 65% of the human positive
linkages map nonrandomly into 18 distinct
clusters, and these susceptibility loci overlap
with those from animal models. These non-
random clusterings suggest that many auto-
immune diseases share a common set of
susceptibility genes, reminiscent of findings
from earlier studies involving kindreds with
multiple autoimmune diseases (82,83).

Studies ofGene-Environment
Interctions in the Etiology
ofAuto une Diseases
There are several examples of environmental
exposures that are involved in the etiology of
specific autoimmune diseases. These include
lupus induced by medications (e.g., hydra-
lazine, procainamide) (94-97), toxic oil dis-
ease and contaminated rapeseed oil (98),
Eosinophilia myalgia syndrome and L-tryp-
tophan (99-101), and Lyme disease and the
spirochete Borellia burgdorferi (102,103).
Several studies have examined immuno-
genetic susceptibility factors that may influ-
ence the development or severity of disease
among exposed individuals (Table 4). As
noted in the discussion of gene-association
studies, the issues of linkage disequilibrium
and control selection make it difficult to
interpret many of these studies. (In most
studies, little information was provided con-
cerning the source of controls other than
that they were normal or healthy.) An excep-
tion is the recent study by Ruberti et al.
(103) examining specific DP, DQ, and DR
alleles in relation to the development of
long-term arthritis in Lyme disease. This is

Scenario

t_|.....
.sum

*: .......

ii3iiliz ; ;e
.e

..,.... .. 1, ;:, ,.
....,;,

.^

*. -

fj,...,0;.......
- -

......., . .- . ... .
.. ..;1.'. ...1 1.

* :. .&:;
2 3- 4:-

. . U~- - --S----$4--... i ; ; ; t X

:,;t'*'S:'wo~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~.;1,n

.~~~~~~~~~~~~~~~~~~~~~~.....

. . > w * ar.J..
tEams~~~~~~~~~~~~~~~~~~~~~. :I.A<~ ,*.:i.-Z'*

"D* *;!;lrl S^fltt l~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~1

. .+ ..+. 'Vt t5t + ''@,*S~~~~~~~~~~~~~~~~~~t.x

Figure 3. Possible mechanisms through which different combinations of genetic and environmental factors may
produce specific physiologic responses (for example, macrophage activation, autoantibody production) and clinically
recognized autoimmune diseases. Abbreviations: IDDM, insulin-dependent diabetes mellitus; RA, rheumatoid arthri-
tis; SLE, systemic lupus erythematosus. For example, The environmental exposures in scenarios 1 and 2 (denoted a, b,
c) may result in either no clinical condition or in SLE, depending on the genetic makeup of the individual. A different
set of environmental exposures (b, d, e) operating on the same genetic factors (scenarios 1 and 3) may also result in
either no clinical condition or in SLE. Specific genes (the shaded squares) pertaining to immune function or metabo-
lism may be common to several different autoimmune diseases. Linked genes are connected by a dotted line; the
different shadings at the same location denote different alleles.

similar to the approach used by Richeldi et
al. (104) in the analysis of genetic risk fac-
tors for chronic beryllium disease, an
immune-mediated inflammatory lung
disease caused by occupational exposure to
beryllium. In their analysis of specific DP
alleles in patients and controls, an associa-
tion with alleles coding for glutamate in
position 69 of the DP-31 chain was seen
among workers with high and with low lev-
els of beryllium exposure (105). This exam-
ple illustrates the need for genetic studies

based on functional analyses of allelic varia-
tion rather than on antigenic phenotype. Ou
et al. (106) recently proposed a classification
scheme for DR alleles based on function.

Ottman (107) described a framework for
studies of gene-environment interaction that
could address different types of relations
between genotype and environmental expo-
sures. This approach to conceptualization,
implementation, and analysis could con-
tribute to future studies of gene-environment
interactions in autoimmune diseases.
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THE ROLE OF GENE7IC FACTORS IN AUTOIMMUNE DISEASES

Issues for the Design and
Interpretation of
Genetic Studies
There are many difficulties in studies of the
role of genetic factors in autoimmune dis-
eases. The polymorphisms in the genes we
have discussed are relatively common: 45%
of Caucasians may have the slow acetylation
NAT genotype (16), and 10-25% of the
population may carry higher risk MHC
genotypes ( for example, see Table 3). But
the prevalence of any of the specific autoim-
mune diseases is very low (approximately 1
per 100 for RA and MS, 1 per 1,000 for
SLE). In this type of low-penetrance situa-
tion, it is necessary to consider multigene
and gene-environment interactions.

Within a clinically defined autoimmune
disease, there may be several different etio-
logic pathways. There may also be common
etiologies between different autoimmune dis-
eases (Figure 3). The same environment (or
constellation of environmental exposures)
operating on different genetic profiles may
result in different physiologic responses and
clinical conditions. It is also possible that the
same clinical condition could result from dif-
ferent environmental exposures operating on
either the same or on different genetic back-
grounds. Thus, the idea that a specific expo-
sure (i.e., either a genetic or an environmental
risk factor) will lead to a specific response is
not necessarily true.

There has recently been a great deal of
interest in methodologic issues concerning
the study of gene-environment interactions
involving case-control, case-only, and family-
based designs (108,109). Power and sample-
size estimates for various designs have been
published (110-113). Examples of this
approach have involved studies of smoking,
NAT, and bladder cancer (114); alcohol,
alcohol dehydrogenase, and oral cancer
(115); and maternal smoking, transforming
growth factor alpha, and cleft palate (116).
An important assumption in these designs is
that environment is independent of genotype,
that is, exposure level or opportunity is not
influenced by the genetic factor being stud-
ied. This assumption is not always true and
must be assessed within the context of any
proposed study (117).

The past two decades have brought
considerable understanding of the role of
genetics in autoimmune diseases. Progress
in this field has depended upon the devel-
opment of more refined measurement
tools-from serologic or other phenotypic
assessments to DNA sequencing. Within
the context of autoimmune diseases, the
environment side of gene-environment
interactions has received significantly less
attention. Thus, to fully understand the

complex etiology of these diseases, it is
important to develop and apply appropriately
refined measures for environmental exposures
in study designs that allow examination of
gene-environment interactions.
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