TEXT-BOOK OF
OPHTHALMOLOGY

BY

SIR STEWART DUKE-ELDER

Surgeon Oculist to H.M. the Queen;
Consulting Ophthalmic Surgeon to the British Army and the Royal Air Force;
Director of Research, Institute of Ophthalmology, University of London;
Honorary Consulting Surgeon, Moorfields Westminster and Central Eye Hospital;
Ophthalmic Surgeon, St. George's Hospital, London

VOL. VI
INJURIES

WITH 1145 ILLUSTRATIONS, INCLUDING
144 IN COLOUR

ST. LOUIS
THE C. V. MOSBY COMPANY
1954
Injuries to the Lower Visual Neuron: Toxic Amblyopia

A heterogeneous collection of organic substances, some of them in common use industrially, therapeutically or in everyday life, may cause considerable visual damage by their action on the ganglion cells of the retina or the optic nerve fibres. These comprise alcohols, particularly methanol, certain halogenated hydrocarbons (methyl bromide and iodide, carbon tetrachloride, trichlorethylene), certain aromatic amino and nitro compounds (aniline, nitrobenzene, trinitrotoluene), and salicylic acid and its derivatives.

Clinically the toxic effects of all these substances are similar, a depression of vision being produced either by the development of a central visual defect (methyl alcohol, methyl bromide, trichlorethylene, carbon disulphide, barbiturates), a contraction of the peripheral field (carbon tetrachloride, salicylates) or a combination of both (aniline and its relatives). Frequently in the initial stages some oedematous disturbance is evident in the retina and at the optic disc; some degree of atrophy is the usual termination. Pathologically, the action of such poisons is not understood. In the case of some there is evidence that a vascular disturbance is the initial cause, in others that the damage is essentially neurogenic, while in others both elements seem to be present, but whether as parallel or dependent phenomena is by no means clear. The same combination of vasotoxic and neurotoxic effects, it will be noted, is observed in the action of those inorganic poisons \(^1\) and toxins of vegetable origin \(^2\) which also attack the lower visual neuron.

The Alcohols

Methanol

*Methanol (methyl alcohol, wood spirit) \([\text{CH}_3\text{OH}]\) may be ingested in one of three ways—through the stomach, the lungs or the skin. Most commonly it is drunk in cheap adulterated or fortified beverages. In this event a very small quantity may cause immense damage, especially when taken on an empty stomach (Hirschberg, 1912), for a teaspoonful may produce permanent blindness and 1 oz. may be fatal (Ziegler, 1921). It may also be absorbed by the inhalation of fumes in several commercial processes, for the alcohol is widely used as a solvent for shellacs and varnishes as well as in the manufacture of china-cement, rubber, and in other processes. In comparison with drinking, this method of poisoning is usually more chronic and insidious in its clinical effects but its occurrence has been amply authenticated in persons working with methyl alcohol in closed ill-ventilated spaces (de Schweinitz, 1896–1911; Patillo and Wood, 1899; Wood and Buller, 1904; Gruening, 1911; Tyson, 1912; Robinson, 1912; Ziegler, 1921; Koelsch, 1921; Humperdinck, 1941; and others). Cutaneous

\(^1\) p. 6774.
\(^2\) p. 6833.
absorption is rare, but cases of blindness have been recorded following the prolonged daily use of liniments, bay rum and toilet waters (Wood and Buller, 1904; Tyson, 1912; Ziegler, 1921).

The drinking of methanol is a relatively common cause of blindness; thus Wood and Buller (1904) were able to collect 153 cases of blindness and 122 of death, and in one Berlin institution for tramps 130 cases were admitted in 1911. Similar tragic incidents continually recur wherein whole parties of people have been affected in this way, some dying, others becoming permanently blind and others escaping with much impaired vision—130 people from one party were taken to hospital, of whom 51 died and many became blind from complete optic atrophy (Mendel, 1912); 67 cases occurred in 3 days among a party of Russian prisoners of war (Opsahl, 1948); 48 cases in Poland (Kwaskowski, 1949); and so on. In times of war when potable spirit becomes expensive or controlled and environmental stresses may be great, the consumption of this cheaper alcohol increases; thus in Denmark, Blegvad and Rönne (1920) found that an amblyopia hitherto unknown in that country became common during the first World War; and in the first 5 months of this war Goldfliam (1920) collected 100 cases in Warsaw. Potts (1952) considered that methanol poisoning accounted for 6% of blindness from all causes among American veterans of the second World War. Periods of prohibition have always added to the number of such incidents; thus even before this restriction was enforced in the U.S.A., Jackson (1920) considered that it caused more blindness than all other toxic causes added together: Hubbard (1920) reported 52 cases in New York in 1918, and Cooper and his colleagues (1952) and Benton and Calhoun (1952) 132 cases of acute poisoning after drinking bootleg whisky in Atlanta, among whom 37 died. Blindness from this cause is relatively common in Scandinavia; in January, 1948, there were 42 cases in Norway (Holst, 1950). Sporadic cases of chronic and secret addiction are still by no means unknown in England, sometimes among the most unlikely persons (Morgan, 1952).

Industry also provides its quota of poisoning. Up to 1912 about 100 cases of amblyopia and death from inhalation had been reported, occurring mostly in painters, lacquerers and polishers, to which number Baskerville (1913) added 64 from America; further instances were contributed by Koelsch (1921).

The general symptoms of acute poisoning by wood-alcohol are headache, dizziness, nausea, vomiting, abdominal pain, cardiac weakness, marked prostration, delirium, convulsions, stupor, and finally death. In cases that recover, blindness is usually noticed on the second or third day when the stupor wears off. In the worst cases the blindness may be early, sudden, complete and permanent. In less severe cases there may be marked recovery at the end of 4 or 5 weeks; this itself may be lasting or may be followed by gradual failure and ultimate loss of vision. In cases of more chronic or insidious absorption, or where the poison is drunk in
repeated small quantities or is absorbed by inhalation, headache and obscure nervous and gastro-intestinal symptoms may appear associated with a gradual deterioration of vision and the development of a dense central or paracentral scotoma (Fig. 6286).

Objectively there may be papillitis with considerable swelling and dilatation of the veins and also a good deal of retinal edema in the early stages (Wagner, 1947; Rohr, 1947; Agg, 1949; Geserick, 1951). Alternatively, a chalky white pallor of the disc may rapidly develop; or in the more insidious cases the symptoms may be those of retrobulbar neuritis, often with an initial centrocecal scotoma, followed by the gradual appearance of atrophy. The atrophy following this type of poisoning is usually profound, and the discs are typically excavated, resembling a glaucomatous cup (Gruening, 1910; Morrison, 1922; Shannon, 1932; Barazzoni, 1947). The pupils are usually dilated and may be inactive and pareses of the extra-ocular muscles with diplopia and ptosis may occur, while a certain degree of hypotony may exist. Unilateral cases are occasionally seen; in these the prognosis is often relatively good (Siegert, 1949).

A considerable amount of experimental work has been done on methyl alcohol poisoning in animals (Holden, 1899; Birch-Hirschfeld, 1901-20; Hunt, 1902; Kasass, 1913; Igersheimer and Verzar, 1913; Tyson and Schoenberg, 1914; Schwarzkopf, 1922; McCord, 1932; Scott et al., 1933; McGregor, 1943; Fink, 1943; Roe, 1948; Marconcin, 1953; and others). It would seem that the ocular lesions are more difficult to produce than in man, but nevertheless there appears to be a special affinity for the tissues of the eye (Marinesco et al., 1929), and although degeneration of the ganglion cells of the retina has been found by some authors, this finding has not been invariable. It is obvious that deductions from experiments on animals should be transferred to the manifestations of poisoning in the human subject only with reservations.

Pathological examinations on human subjects have been relatively few (Pick and Bielechowsky, 1912; Comora, 1920; Eleonskaya, 1925; MacDonald, 1929; Menne, 1938; Fink, 1943; Wagner, 1947; Roe, 1948; Muller, 1950). Initially the picture is that of an acute toxic edema followed by profound and widespread degeneration of the ganglion cells of the retina (Figs. 6287-88), with degeneration of the fibres in the optic nerve, which in severe and chronic cases may extend up to the external geniculate body. p. 6832.
CHEMICAL INJURIES

(Eleonskaja, 1925). Some controversy has arisen as to whether the changes in the retina or the nerve are primary (Uthoff, 1886), but the view of Holden (1899), Tyson and Schoenberg (1914) and Birch-Hirschfeld (1920) that the injury to the ganglion cells is primary and that the degeneration in the nerve is an ascending secondary phenomenon seems substantiated by the findings of MacDonald in an early human case examined pathologically.

Figs. 6287-88.—The Retina in Acute Methyl Alcohol Poisoning (MacDonald).

Fig. 6287. Autopsy 6 hours after death, showing marked changes about the vessel and degenerative debris under the internal limiting membrane. (Mallory's phospho-tungstic acid hematoxylin) (× 100).

Fig. 6288.—The same case as Fig. 6287, showing swollen ganglion cells and globules under the internal limiting membrane (H. & E.) (× 400).

(who died on the third day and was examined 6 hours after death), wherein the degeneration in the retina was marked and no pathological change could be observed in the optic nerve.

The rationale of the poisoning is still obscure. It is known that whereas ethyl alcohol is rapidly and completely oxidized in the body, methyl alcohol is much less readily dealt with, remaining many days so that a cumulative effect is possible (Völzt, 1912). Tyson and Schoenberg (1914) found that there was a general acidosis due to the imperfect oxidation of the methyl alcohol, resulting in the formation of formaldehyde and formic acid in the blood-stream and tissues; this even gives rise to an increase in the acidity of the aqueous humour (Grignolo, 1913; Tyson and Schoenberg, 1914) where formaldehyde has been found in poisoned rabbits (Flury, 1928). By
some workers formaldehyde is considered the toxic agent (Flury and Wirth, 1936; Keenser and Vincke, 1940; Potts and Johnson, 1952), by others formic acid (Harnack, 1912; Kaplan and Levrault, 1945; Röe, 1946; Bogen, 1946). However that may be, it has been shown by Goldschmidt (1922) and Oguchi (1922) that the oxidative processes in the retina are much impaired and its respiratory activity lowered, so that the metabolism may be reduced by 40% to 50%. The former investigator concluded that the damage was greater when the retina was exposed to light, a view put forward also by Schanz (1920) and Schieck (1922), but not universally accepted (Schwarzkopf, 1922). It would seem probable that an interference with the activity of those enzymes in the retina which mediate glycolysis is the fundamental cause of the damage to this tissue, perhaps by a combination of methanol or one of its break-down products with the iron catalyst of the oxidase system, thus rendering it inactive (Rohr, 1947; Potts and Johnson, 1952; Gilger et al., 1952). This process may be accelerated in the presence of acidosis, and initially brings about an oedematous reaction which may be reversible and from which visual recovery is possible, and eventually progresses to degeneration and death of the nerve cells with permanent visual loss. Whether the vascular and oedematous reaction is the essential cause of the damage leading secondarily to neuronic degeneration (Geseric, 1949), or whether the two phenomena are parallel effects of the same cause is disputable; nor is it known how far the changes in the optic nerve are independent of or consecutive to those in the ganglion cells of the retina. Much of the intimate mechanism is not yet understood.

Treatment. In severe cases of poisoning the rapidity of the toxic action makes treatment of little avail. Gastric lavage should be carried out immediately and at intervals during the first few days, since there is evidence that the alcohol in the system is continuously returned to the stomach; it has been said, indeed, that more may be recovered in this way in the second and third day after ingestion than during the first (Ziegler, 1921). Eliminative treatment by diaphoresis, hot-packs, pilocarpine, hot drinks and saline purgatives is also indicated to wash as much poison out of the system as possible. Acidosis should be overcome by the early and massive administration of alkalis, sodium bicarbonate being given by mouth or intravenously (500 ml. of 5% solution: Ziegler, 1921; Röe, 1946); unless given early, however, such treatment is useless (Siegert, 1949). Intravenous glucose has also been advocated (Kwaskowski, 1949) or intravenous novocaïne (Aronov, 1949), and vasodilators such as Priscol (Fanta, 1948) or erythrol-tetranitrate (Montag, 1948). The administration of ethyl alcohol has been practised in the hope that, by competing for oxygen with the methanol, the formation of the toxic products of the oxidation of the latter would be delayed (Röe, 1949; Agner et al., 1949), but this method of therapy would appear to be associated with some danger (Gilger et al., 1952). Finally, good results have
been claimed from repeated lumbar punctures (Pincus, 1920; Zethelius and Wersen, 1920; Fanta, 1948; Kwaskowski, 1949).

Dent. med. w., xlvi, 311, 1920.
T. Am. O. S., xiii, 321, 1911.
Harnack. Deut. med. w., xxxviii, 328, 1912.
Münch. med. w., lix, 1941, 1912.
Chem. Abh., vii, 3794, 1913.

Pastillo and Wood. O. Rec., viii, 699, 1899.
Potts and Johnson. Am. J. O., xxxv (2), 107, 1932.
de Schweinitz. The Toxic Amyleopias, Phila., 1896.
T. Am. O. S., xii, 323, 1911.
Uthoff. A. F. O., xxxiv (4), 95, 1886.
Wood (Cayley) and Bulter. J. Am. Med. As., xlii, 972, 1058, 1117, 1213, 1289, 1904.

ETHANOL

ETHANOL (ETHYL ALCOHOL) [C₂H₅OH] is much less toxic than its lower homologue; indeed, its deleterious effect on the lower visual neuron is usually...
an adjuvant factor in association with the ingestion of other toxins such as those found in tobacco. The older writers, however, satisfied themselves that cases of alcohol ambylophia occurred in heavy drinkers who are also non-smokers (amblyopia potatorum) (Hutchinson, 1887; Griffith, 1887; Connor, 1890; de Schweinitz, 1896). On the Continent of Europe the condition would appear to be more common than in Anglo-Saxon countries (44% of cases of ambylophia, Uhthoff, 1886; 27%, Sattler, 1923). The condition is always associated with a long history of alcoholism, and frequently with peripheral neuritis. There is no doubt that a recent deterioration of the physical and mental health enters largely into the aetiology, a matter in which malnutrition, usually owing to long-standing alcoholic gastro-enteritis, usually plays a prominent part. Indeed, it may well be that the condition is essentially a deficiency disease related to alcoholic pellagra and due essentially to lack of absorption of one or more of the constituents of the vitamin B complex (Keeler, 1931; Carroll, 1935–37; and others).

Little experimental work of value has been done on the question, largely owing to the difficulty in inducing a chronic poisoning in animals; thus de Schweinitz (1896) kept a monkey constantly drunk for 6 months but found neither ophthalmoscopic nor histological evidence of ill-effects in its eyes. Rymowitsch (1896) and Friedenwald (1901), however, after chronically poisoning rabbits for one year, observed degeneration of the ganglion cells, without connective tissue overgrowth or cellular infiltration and unassociated with degeneration of the nerve fibres as revealed by Marchi's method of staining. Morax (1935) recorded a case wherein a woman was given an intravenous injection of 200 ml. of 33% alcohol for puerperal septicæmia and subsequently developed bilateral absolute central scotomata with optic atrophy.

In so far as ethanol ambylophia may exist, it is characterized by a clinical picture resembling tobacco ambylophia—a central scotoma for red and green in the early stages, a centro-cæcal scotoma for white in the later, eventually developing into optic atrophy. The pathology is also similar, being characterized by a primary neuronc degeneration affecting particularly the papillo-macular neurons and involving the ganglion cells and the nerve fibres (Nettleship and Edmunds, 1881; Samelson, 1882; Edmunds and Lawford, 1887; Uhthoff, 1901; Birch-Hirschfeld, 1902; Rönne, 1910; Juba, 1935) (Fig. 6289). Atrophy is rarely complete, normal fibres being present even in the most affected

1 p. 6838.
3 Vol. III, p. 3009; p. 6838.
areas, while the connective-tissue framework is consistently thickened and proliferated.

Treatment should involve cutting down or abstinence from alcohol, a similar restriction being placed on smoking if it is also indulged in, a complete overhaul of the general health, and, above all, the institution of a healthy and regular diet with an abundance of vitamin B in the form of yeast or otherwise (Carroll, 1935–37; Johnson, 1939); there is evidence that the administration of vitamin B₁₂ may give spectacular results. As in tobacco amblyopia, Bonnefon (1931) reported good results from the injection of vasodilatatory drugs (intramuscular injections of 0·1 gm. acetycholine).

The effects of alcohol on the higher visual functions¹ and the extra-ocular muscles² are discussed later.

Friedewald. *O. Rec.*, x, 428, 1901.
Griffith. *T. O. S.*, vii, 81, 1887.
Hutchinson. *T. O. S.*, vii, 61, 1887.

THE HALOGENATED HYDROCARBONS

Of the monohalogenated hydrocarbons,³ Methyl chloride [CH₃Cl] poisoning usually results in considerable visual disturbances, retrobulbar neuritis, diplopia and failure of accommodation (Roche and Bouchet, 1948; from the fumes of a refrigerator, Garde and Etienne, 1951). Methyl bromide [CH₃Br] may give rise to acute visual symptoms when inhaled in quantity (as from a fire extinguisher or when used as a fumigant⁴) (Wyers, 1945; v. Oettingen, 1946). Vascular instability is probably an initial factor and the acute phase of intoxication may be followed by the appearance of neuro-degenerations among which there may be an aphasia, a transitory complete amblyopia, or a central scotoma which may persist for a few weeks or may last for years (Joquet, 1901; Duvoir et al., 1937; De Jong, 1944; Clarke et al., 1945; Roger and Simonin, 1948; and others).

Methyl iodide [CH₃I], in cases of acute intoxication, has also been reported as giving rise to visual disturbances with contraction of the fields (Hunter et al., 1940; Garland and Camps, 1945).

IODOFORM

Iodoform [CH₃I], if absorbed in large amounts, may give rise to complete amaurosis (Valude, 1893) or more usually to an amblyopia characterized by a loss of central vision with peripheral defects and without ophtalm-
Disturbances of the Higher Visual Functions

Many organic chemicals on ingestion produce disturbances in the higher visual functions. The narcotic chlorinated hydrocarbons (chloroform, trichloroethylene, etc.) or ethyl ether produces on inhalation a muzziness of vision as a preliminary to unconsciousness, an effect partly due to the occurrence of diplopia owing to ocular inco-ordination but largely to impairment of perception and judgment. In this class of substance, however, the most important from the practical point of view is ethyl alcohol.

ETHANOL (ETHYL ALCOHOL)

The disturbances of the higher visual functions following the ingestion of alcohol—even of the most reputable type—are well known; they are much more common than the organic lesions which may occur in the lower visual neuron \(^1\) or the extra-ocular musculature. \(^2\) It is important to remember that alcoholic intoxication is not a gradual process but comes on quickly when the concentration in the blood rises to a critical level which varies considerably between individuals (from 170 to 183 mgm. per 100 ml. blood) but is relatively constant for the same individual; a concentration achieved rapidly, however, is more potent than when acquired slowly, and even although an intoxicating level is maintained in the blood, time has a sobering influence (Mirskey et al., 1941; Newman and Abramson, 1942).

Several visual effects become evident in alcoholic intoxication, all of which are depressant in type, but there is on the whole little direct correlation between the alcoholic concentration in the blood and the decrease in the efficiency of the visual functions (Newman and Fletcher, 1941). The visual acuity is lowered by an appreciable amount varying from 5 to 20% (Newman and Fletcher, 1940; Newman and Abramson, 1941) although the perception of objects in the peripheral field has been found to remain relatively good (Newman and Fletcher, 1940; King, 1943). Sensitivity to light is lowered

\(^1\) p. 6821.
\(^2\) p. 6832.
on the average by some 30% and the threshold to brightness-difference is increased by some 50% (Lange and Sprecht, 1915; Jellinek and McFarland, 1940); recovery from glare is also retarded (Newman and Fletcher, 1941). The data as to colour vision are inconsistent. Colson (1940) found no change in colour vision although the intake of alcohol was pushed to the point of unconsciousness, but Peters (1942) found a constriction of the colour fields progressing to their complete extinction; Pirritty and Nagy (1951) concluded that the weakening of colour perception depended essentially on disturbed judgment rather than on impaired perception. A case of dyschromatopsia (mainly cyanopsia) has been recorded (Pergens, 1898). The more complex visual judgments, such as depth perception, are also grossly impaired (Newman and Fletcher, 1941; Newman et al., 1942) and the reaction-time (as for reading) shows considerable deterioration (Rudin, 1904; Seward and Seward, 1936; Mead, 1939). The general inhibitory effect on visual perceptions is clearly demonstrated by the decrease in retinal rivalry and the parallel increase in uniocular dominance which become evident after the ingestion of alcohol (Bárány and Halldén, 1947).

The ocular movements are usually affected at an early stage. The development of a general slowness and hesitancy of movement has been established by several observers and the ability to maintain fusion in the presence of lateral heterophoria almost invariably breaks down; there is little change in the vertical phorias, but a fairly constant increase of eso-phoria and a decrease in exophoria. These changes in ocular deviation are usually small, averaging some 2 prism dioptres, but the failure of fusional ability and particularly the decrease in the power of suppression—part of the general breakdown of inhibition—make diplopia a relatively constant symptom (Powell, 1938; Colson, 1940; Charnwood, 1950).

The most important feature about the visual evidences of alcoholism, apart from the diplopia which is too subjectively obvious to be denied, is that the general depression of the visual functions is rarely recognized by the inebriated individual who, indeed, is too apt to imagine the reverse.

Sedatives such as the barbiturates,\(^1\) chloral hydrate \([\text{C}_2\text{H}_5\text{ClN}_2\text{O}_2]\) and others, share the depressant effect of alcohol on the higher visual centres. This was elegantly shown by Bárány and Halldén (1947) by studying their effect on retinal rivalry. After their ingestion the less dominant eye suffers a preferential inhibition so that the rhythm of rivalry decreases, and central inhibition may eventually be depressed to such a degree that rivalry is replaced by simultaneous perception.

\(^2\) Streptomycin \([\text{C}_8\text{H}_7\text{N}_2\text{O}_{10}]\) has been reported as causing disturbances of perspective and coloured vision (xanthopsia) associated with euphoric states (Eiselt and Kloubek, 1948; Weigelin, 1949).

\(^3\) Carbon disulphide \([\text{CS}_2]\) poisoning may be associated with curious phenomena of dyschromatopsia, sometimes transient and sometimes of considerable duration,

\(^1\) See also pp. 6821, 6833. \(^2\) See also pp. 6829, 6837. \(^3\) See also pp. 6827, 6833, 6834, 6836.
manifested most often as yellow vision (xanthopsia) (Changarnier, 1886), but sometimes green (chloropsia) or red vision (erythropsia) (Bruce, 1884; Mattei and Sédan, 1924).

ASTEROL DIHYDROCHLORIDE (6-(β-diethylyaminethoxy)-2-dimethylamino-benzothiazole dihydrochloride) [C₂₉H₂₈N₂O₂S · 2HCl], a substance used medically in the treatment of fungus infections (ringworm, etc.), has been associated with the production of convulsive seizures in children followed by a state of lethargy and confusion in which visual hallucinations are a prominent feature; nystagmus and mydriasis may also be present (Hitch, 1952).

The visual disturbances, involving dyschromatopsia, hallucinations, etc., which follow the ingestion of certain alkaloids of vegetable origin (digitals, mescal, caffeine, etc.) are discussed elsewhere.¹

Muscular Disturbances

Muscular disturbances of the most varied types may follow the ingestion of many organic chemicals—palsies of the extra-ocular muscles, nystagmus, and paresis or spasm of the intra-ocular musculature resulting in mydriasis or miosis and anomalies of accommodation which may induce refractive changes of some size.

The Extra-ocular Muscles

Paralyses of the extra-ocular muscles involving diplopia are not a common toxic manifestation of poisoning by organic chemicals.

Among the hydrocarbons, petrol fumes have been noted to produce this effect (Plummer, 1913); so also has methyl alcohol (CH₃OH) (Wood and Buller, 1904). The nuclear palsies ascribed to ethyl alcohol (CH₃OH) have been described in a previous volume under the heading of thiamin deficiency (Wernicke’s acute hemorrhagic encephalopathy).³

Among the halogenated hydrocarbons,⁴ the monohalogenated members of the series are the most toxic in this respect; ptosis, ocular palsies and diplopia have been reported after the inhalation of both methyl chloride [CH₃Cl] (Baker, 1927-30; ¹ p. 6848.
² See also pp. 6736, 6816.
³ See also pp. 6737, 6821, 6830.
⁴ Vol. IV, p. 4111.
⁵ See also pp. 6732, 6823, 6833.
CHEMICAL INJURIES

Kegel, McNally and Pope, 1929 ; Jones, 1942 ; Florentin, 1944 ; Roche and Bouchet, 1948) and methyl bromide [CH₃Br] (Joquet, 1901) ; the latter may also give rise to nystagmus (De Jong, 1944). Chloroform [CHCl₃] and several other allied anesthetics produce initially on inhalation a bilateral internal strabismus which gradually passes into a divergent strabismus, a phasic variation which may be repeated (Högys, 1883) ; the convergence is presumably a central stimulation which gradually or intermittently disappears as narcosis becomes deeper. Nystagmus occurs more rarely (Howie, 1944), an effect also seen after the inhalation of dichloroethane (ethylene dichloride) [CH₂Cl₂CH₂Cl] (McNally and Fossett, 1941). Dichloro-ethylene [Cl₂CCl] is probably formed as a degradation product in the interaction between soda lime and trichloroethylene in a closed anesthetic machine, has apparently caused paralysis of the IIIrd, IVth and Vth nerves, together with involvement of the Vth, Xth and Xth (Humphrey and McClelland, 1944). The vapor of this substance produces a generalized encephalitis in rabbits (Carden, 1944).

Among nitro-compounds, pyridine [C₅H₅N], a coal tar derivative and a constituent of tobacco smoke (Vohl and Eulenberg, 1871), widely used in the dyeing and chemical industries, may on inhalation produce a symptomatology resembling Wernicke's acute polio-encephalitis.¹ In chronic industrial poisoning, cases involving facial paresis, conjugate deviations of the eyes, ptosis and horizontal nystagmus, as well as anosmia, a loss of the palatal reflex and ataxia, have been reported by Ludwig (1934), and others showing slighter nervous symptoms by Holtzmann (1936) and Tiesinger (1947).

In carbon disulphide [CS₂] poisoning ocular motor palsy is rare, but have been noted in workers who have been exposed to the fumes for many years (Little, 1887 ; Goleseano, 1907 ; Roger and Roger, 1950 ; van Leeuwen and André, 1950). A spasmodic diplopia was reported by Galezowski (1878).

The barbiturates² have occasionally given rise to muscular palsy — veronal either on acute poisoning or on habitual ingestion, may produce irregular ocular palsy of the nuclear type associated with cerebellar derangements. Luminal may occasionally have the same effect (Collier, 1930) as also may evifan (Palmer, 1936).

The barbiturates also tend to abolish nystagmus in the primary position of the eyes but produce a coarse nystagmus on lateral gaze when taken in large doses (Kisch, 1943 ; Bender, 1946 ; Bender and O'Brien, 1946 ; Bender and Brown, 1948 ; Bender and Gorman, 1949). This has been noted with veronal as well as with sulphonophene (Oppenheim, 1917 ; Wilbrand and Saenger, 1921), and the more recently introduced preparations such as mynasen (tolserol) (3-ortho-toxy-1,2-propanediol) (Bender et al., 1951). Animal experiments indicate that the action of these drugs is essentially on the brain-stem (Berger and Bradley, 1946 ; Kaada, 1960).

Salicylic acid (orthoxybenzoic acid) [C₆H₅COOH] in large doses has given rise to nystagmus (Lewin and Guillery, 1913), and thiouracil [(NH)₂SNC(O)CH₃] to a gross nystagmus in all planes (Prowse, 1960).

THE INTRA-OCULAR MUSCLES

The pupillary and ciliary musculature is affected by several organic chemicals, the most notable of which are the halogenated hydrocarbons and the sulphonamides.

Methyl chloride [CH₃Cl] (Florentin, 1944), methyl bromide [CH₃Br] (De Jong, 1944), methyl iodide [CH₃I] and methylene chloride [CH₂Cl₂] (Hellwig, 1922 ;

¹ Vol. IV, p. 4111. ² See also pp. 6827, 6831, 6834, 6835.
Garland and Camps, 1945) all cause a marked dilatation of the pupil; in the case of methyl chloride a failure of accommodation may be marked (Roche and Bouchet, 1948).

In narcosis with these substances the pupillary reactions follow a definite routine which has been most fully studied with CHLOROFORM [CHCl₃] (Budin and Coynne, 1875; and others). Initially in the stage of excitement there is mydriasis, to be followed by miosis, and in deep anaesthesia a mydriasis again develops indicating a dangerous depth of narcosis. Cats and rabbits do not develop the miosis (Nakazawa, 1910). These changes are of central origin; the mydriasis occurs after extirpation of the superior cervical ganglion (Spallotta, 1893) and is presumably due to central inhibition of the constrictor centre.

In chronic CARBON DISULPHIDE [CS₂] poisoning, paralyses of the intra-ocular musculature may occur—a weakness in the response to light (Offret, 1906) and in accommodation (Galeziowski, 1878; Golesceano, 1907; Haas and Heim, 1910; Bashore and Staley, 1938; Warnecke, 1941) or absolute rigidity of the pupils (Quarelli, 1937).

A transient myopia following treatment by one or other of the SULPHONAMIDES¹ has been recorded by Gailey (1939), Mattson (1939), Landberg (1939), Lagrange and Laudet (1939), Fänge (1939), Heinonen (1939), Saba (1940), Hornbogen (1941), Blankstein (1941), Friedman (1941), Paez Allende (1941), Vázquez-Barrière (1941), Garcia Miranda (1942), v. Freiand (1942), Granström (1949), Melihose (1949), Klinvansansaya (1951) and many others. The large number of reports from all over the world following the general adoption of these drugs shows that this complication of sulphonamide therapy is common. As a rule the myopia does not occur when the drug is taken initially, but during a subsequent period of dosage, suggesting that a sensitivity develops. In many cases the element of ciliary spasm seems to be the causal factor and it usually rectifies itself on cessation of the drug; according to Varga (1930) it is relieved by the administration of oxygen; and Melihose (1949) believed that a lesion of the nature of a localized encephalitis developed in the central nervous system determined, perhaps, by allergic sensitivity. That the myopia is not invariably of muscular origin, however, is indicated by the fact that atropine does not always abolish the refractive error (Fänge, 1939). Hornbogen (1941) thought that the phenomenon might be due to oedema of the lens, which in Blankstein's (1941) view might be caused by an unequal distribution of the drug between this tissue and the aqueous. The mechanism of the refractive change, however, is by no means clear.

A similar myopia due to a temporary paralysis of accommodation has been recorded after the administration of DISULPHONE (Belonsova, 1951; Lukomnik, 1951).

AMMONIUM THIOGLYCOLATE, sometimes applied to the hair as a cold permanent wave, has apparently given rise to a total internal ophthalmoplegia which recovered after 4 weeks (Halbron, 1949).

¹ See also pp. 6736. 8539.
CHEMICAL INJURIES

Coffin. T. O. S., 1, 244, 1930.

Friedman. J. Am. O. o., xxiv, 925, 1941.

Heinonen. Duodecim, xxxv, 552, 1930.

Holtzmann. Ch. f. Gerzerehgy., xxiii, 8, 1936.

Little. T. O. S., vii, 73, 1887.

Paez Allende. Semana Méd., xlix, 1273, 1941.

Roche and Bouchet. A. de mal. prof., ix, 406, 1948.

Rogers and Rogers. Am. méd. psychol., i, 1, 1950.

Spalitta. A. di farmacol. e terap., i, 353, 1893.

Wood and Buller. J. Am. Med. As., xliii, 972, 1068, 1117, 1213, 1289, 1904.

Sensory Disturbances

A trigeminal sensory paralysis has been found to follow the inhalation of TRICHLORETHYLENE (ETHYLENE TRICHLORIDE) [CHCl\textsubscript{3}], the vapours of which form an industrial hazard; the vapour has been employed as an anaesthetic ("trilene"), but fatalities have occurred after its use (V. Oettingen, 1937; Hunter, 1944). This peculiar action on the trigeminal was first described by Plessner (1910); it affects the sensory branch of the nerve, not the motor division, and although it may occur without any general symptoms of poisoning, a considerable period of time is necessary for its development. The anaesthesia is preceded by a phase of coldness and dryness in the mouth and nose associated with a loss of smell and taste,
CHEMICAL INJURIES

THE ALDEHYDES

The aldehydes are a group of substances widely used as solvents for oils, resins, cellulose, and other organic materials as well as in inorganic syntheses. Either in the form of vapour or liquid they have an intensely irritant action on the eyes and respiratory tract, the lower members of the series, which are more water-soluble, having the greater irritant effect on the mucous membranes, while the higher, which are more fat-soluble, affect more particularly the lungs. Their narcotic action is less evident than is the case with many other solvents. The addition of a halogen atom to the molecule increases the irritant effect, but the addition of three enhances the narcotic effect (chioral hydrate). On exposure to the vapour in low concentration an immediate and intense ocular irritation results in profuse lacrimation; higher concentrations lead to lethal pulmonary irritation.

Their action is complex. In addition to their solvent properties, which endow them with great penetrating powers, they produce rapid necrosis of the tissues by combining avidly with the amino groupings in the protein molecules, thus inducing denaturation and precipitation. In addition, they are powerful reducing agents, being oxidized in the tissues to formic acid in the process, and in this way also they inhibit enzyme systems. Moreover, they tend to act as antigens to produce aldehyde-protein antibodies so that a specific sensitization is developed particularly by the skin, making repeated contacts more potent in their irritant effects.

FORMALDEHYDE (Methyl aldehyde) \(\text{HCHO}\) is used extensively in such industries as plastics and rubber and is usually encountered domestically in its commercial aqueous solution (40%). Formalin (formol), commonly used as a preservative and disinfectant. An ocular lesion is caused by dilutions from 1 in 1,000 to 1 in 2,000 (Gepner, 1894; Flury and Zernik, 1931). Hisatomi (1939) recorded a case wherein a 26% solution was splashed into the eye causing an edematous thickening of the cornea with folds in Descemet's membrane associated with iritis; but the condition rapidly resolved. Experimentally in the cornea of the rabbit, a drop of formalin causes immediate coagulation of the surface epithelium without much opacification; the chemical spreads rapidly throughout the entire thickness of the stroma in which the corneal corsecles are killed and fixed in situ to

Note: The text contains errors and inconsistencies, including typographical errors and missing citations. The provided information is a representation of the text as it appears in the document.
appear as minute white dots, while subsequently a swelling and oedema of the tissue gradually develops. About the end of a week after contamination there is an abortive attempt at vascularization. Within a month the cornea is normal although some epithelial disturbance remains for some time—a remarkable recovery in view of the gross initial changes (Carpenter and Smyth, 1946; Mann et al., 1948). A considerable reaction of the same type is caused by intracorneal injection (Hughes, 1943).

Clinical cases in man have been few. The vapour causes a severe but transient reaction (Andreae, 1899, in a chemist; Würdemann, 1932, in disinfecting establishments; v. Oettingen, 1939, in industry), while a drop on the cornea has produced an extreme degree of chemosis and a keratitis resulting in permanent opacities (Andreae, 1899; Sager, 1906; Carpenter and Smyth, 1946). An intense reaction involving corneal infiltration and severe iridocyclitis with turbidity of the aqueous and vitreous opacities following the lodgement of two minute fragments of a gramophone record in the cornea, was attributed by Velicky (1951) to the formaldehyde in this material: removal of the foreign bodies brought rapid resolution.

Exposure of the eye to the vapour of other aldehydes has caused severe and painful reactions with swelling of the lids, blepharospasm, lacrimation and conjunctival injection; after lavage of the eye this has usually rapidly subsided. Droplet contamination may produce a necrotic lesion of the cornea—ACETALDEHYDE (ETHANAL) [CH₂CHO] (Carozzi, 1925–30; Flury and Zurnik, 1931; McLaughlin, 1946), ACRYL ALDEHYDE (ACROLEIN) [C₂H₃CHO], used as a military poison gas (Lewin, 1900; Carozzi, 1925–30; Flury and Zurnik, 1931; Prentiss, 1937; Jacobs, 1944; McLaughlin, 1946), BUTYL ALDEHYDE (BUTANAL) [C₄H₇CHO] (McLaughlin, 1946), CROTON ALDEHYDE [C₅H₇CHO] (Homburg, 1883; McLaughlin, 1946), PYRUVIC ALDEHYDE [C₃H₅OCHO] (Carpenter and Smyth, 1946), and FURFURAL (FURALDEHYDE, FURAL) [C₅H₆OCHO] (Flury and Zurnik, 1931; Lehmann and Flury, 1943).

The Ketones

The ketones are widely used in a large number of industries, particularly those dealing with plastics, rubbers, dyes and paints. They have a relatively low order of toxicity resembling in type that of the aldehydes, readily producing irritation and homologs of acetone.

Ace cellulose with mucollagen animals industri, 1950.

Ketone such as necrotic [C₃H₆O₂], 1939; C. Sev. elsewhere.

Carozzi, 1934

Carpenter, 1935

Gomul, 1933

Halberts, 1923

McLaughlin, 1946

In the eth.
Th its well.

Such p.

Irritant the hal.

Line o.

This is mainly [C₅H₅O₂]; chlorophyl producing the eye.
HYDROCYANIC ACID AND THE CYANIDES

HYDROCYANIC (PRUSSIC) ACID [HCN] (and cyanides which can liberate the CN radical, particularly potassium cyanide) is the most rapidly acting known poison. It produces death through asphyxia by inhibiting oxidative processes in the cells throughout all the tissues. The supply of oxygen through the blood is unimpaired and, indeed, since the oxygen is unused in cyanide poisoning, the venous blood is as red as the arterial; the cells of the tissues, however, are prevented from utilizing oxygen since the cyanide enters into a reversible combination with their oxidative enzymes, particularly those of the cytochrome system which are concentrated on their surfaces, an action similar to that of azides \(^1\) (see Warburg, 1911–29; Brinley, 1929; Clark, 1937; Quastel, 1939; Binkley et al., 1944; Albaum et al., 1946; and others).

The symptoms of acute poisoning are dramatic; after swallowing cyanide the victim falls down within a few seconds, usually with a loud cry, and rapidly dies in convulsions. After smaller doses the convulsive stage is preceded by a period of vertigo, dyspnoea and unconsciousness. Hydrocyanic acid is very volatile, boiling at 25.7°C, and accidental inhalation of the vapour—a misadventure which killed Scheele, the discoverer of this substance (1872)—leads to a progressive vasodilatation with flushing of the skin and a feeling of warmth followed by prostration, nausea, vomiting, dyspnoea, unconsciousness and respiratory paralysis. Between the years 1933 and 1948 in the United States alone, 248 people died by accidental cyanide poisoning, and suicides totalled more than 3,000 (Chen and Rose, 1952).

In chronic poisoning few ocular symptoms appear; Souwers (1878) noted a sluggishness of the pupil and swelling of the upper lid. In acute poisoning mydriasis may be maximal, there may be photophobia (Müller-Warnek, 1878), a hemianopia may occur (Tatham, 1884) or amaurosis. In the eye itself morbid changes are seen only in the retinae of those dying of poisoning. Clinically the picture of diffuse edema is found with the cherry-red spot at the macula and blurred margins of the disc characteristic of complete anoxia, resembling that following occlusion of the central artery. Histologically, the vulnerable lower neuron is particularly affected, the ganglion cells and the nerve fibres showing degenerative and atrophic changes (Alagna, 1946).

Nitrites may be used in the treatment of cyanide poisoning in order to bring about the conversion of some of the hemoglobin to methemoglobin which in turn combines with the cyanide. The most recent recommendation is the inhalation of amyl nitrite together with the intravenous injection of 10 ml. of 3% sodium nitrite and 50 ml. of 25% sodium thiosulphate (Potter, 1950; Wolfsie, 1951; Chen and Rose, 1952). The last authors stated that of 44 cases in the literature treated sufficiently early in this

\(^1\) p. 6595.
way, 43 recovered; resuscitation, however, must be immediate so that facilities are rarely available unless in factories where the risk is recognized and expected.

Biochem. Z., exix, 134, 1921.

INDEX

Macula, oedema of, concussion, 5845
Magnesium burns, 6386
sails, contact injuries from, 6864
Magnetic properties of foreign bodies, 6155
removal of foreign bodies, 6280
Magnetometer, 6239
Magnets, action of, 6280
electro-, 6282
grand, 6285
hand, 6284
localization of foreign bodies by, 6239
permanent, 6282
power of, 6282
ring, 6287
Magon plant, juice of, 6639, 6749
Malar fractures, 5914
treatment of, 5923
Maleic acid, burns from, 6628
anhydride, burns from, 6629
Malpractice, injuries due to, 5746
Manganese poisoning, 6788
Marcus Gunn phenomenon, post-traumatic, 5951
Marmorcontiosis, 6131
Massage cataract, 5818
Mechanical injuries, 5751
indirect effects of, 6349
intra-uterine, 5718
Menthol, injuries from, 6683
Mepacrine. See Atabrine.
Mercurialentis, 6793
Mercurialism, 6785
Mercury, foreign bodies, extra-ocular, 6133
intra-ocular, 6185
pigmentation from, 6682, 6793
poisoning, 6736
radio-density of, 6244
salts, contact injuries from, 6661
Mescal, toxic effects of, 6849
Mesquite tree, thorn of. See Cercidium acid.
Metallic corrosives, 6654
foreign bodies, extra-ocular, 6133
intra-ocular, 6180
orbital, 6319
impregnations, 6791
poisons, 6772
Metallophone, 6239
Metalloscope, 6241
Methanol, ambylopia from, 6816
contact injuries from, 6736
ocular motor palsies from, 6832
Methyl alcohol. See Methanol.
aldehyde. See Formaldehyde.
bromide, ambylopia from, 6823
contact injuries from, 6695
ocular motor palsies from, 6832
pupil changes due to, 6833
chloride, ambylopia from, 6823
contact injuries from, 6695
ocular motor palsies from, 6832
pupil changes due to, 6833
iodide, ambylopia from, 6823
contact injuries from, 6696
pupil changes due to, 6833
iodoacetate. See Lacrimators.
methacrylate, injuries from, 6743
violet, injuries from, 6690
Methylene chloride. See Dichloromethane.
Mica foreign bodies, extra-ocular, 6131
Micro-wave diathermy, lesions from, 6470
Middle facial fractures, 5906
Migraine, cervical, traumatic, 6388
Millikan's rays, 6448
Miners, injuries in, 5736
Miosis, traumatic, 5774
after electrical injury, 6431
Mist, 6537
Mitosis, effect of abiotic radiation on, 6503
chemical injury on, 6599
drugs on, 6754
ionizing radiation on, 6627
in wound healing, 5969
Molten metal, burns from, 6535, 6396
Morphine, toxic effects of, 6846
Mortar, burns from, 6639
Motion sickness, 6876
Mountain sickness, 6884
Mucocoele, traumatic, 5906, 5916
Muscle imbalance in altitude anoxia, 6888
tissue as foreign body, 6222
Muscles, extra-ocular. See Extra-ocular muscles.
Mushroom toxin. See Helvetic acid.
Mustard gas, injuries from, 6699
kerato-conjunctivitis, 6707
delayed, 6709
nitrogen. See Nitrogen mustard
oil, injuries from, 6758
Myasthenia, nystagmus due to, 6833
Myasthenia from tobacco, 6842
Mydriasis, traumatic, 5775
after electrical injury, 6431
after foreign body, 6189, 6237

Mydr

Myog

Navet

er

Naph

Naph
cor

poi

Naso

t

Nasc

c

Nece

c

rad

Neop

do,

Nerv

mo

Neu

sen

Neuri

trig

i

Neuri

i

Neur

i

Neur

det

Neut

i

Nicks

rad

Nicot

Night

Nitric

(nit)
optic nerve in a patient with severe visual loss from methanol poisoning may appear normal indicating the presence of retrobulbar neuritis.