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SUMMARY

The peroxidative system involving catalase plays an important role in the oxidation ,,;
methanol in the rat, but is of little importance for this purpose in the monkey. Since then
is abundant hepatic catalase in the monkey, the question arose why it does not functio:.
measurably in the peroxidative oxidation of methanol in this species. Two possibilities wets
investigated: (a) catalase may be distributed in the hepatic cell in such a way that it is n
as accessible to peroxide-generating systems as it is in the rat, and (b) hepatic catala.
froth the monkey may be less active peroxidatively than that found in the rat. Evidence ws.
presented to show that both these factors combine to explain, at least in part, the failure ^•:
the peroxidative system to function appreciably in the oxidation of methanol in the monkey
The mouse and the guinea pig resemble the rat in that they also utilize the peroxidativ..
system for the oxidation of methanol. The rate of methanol oxidation in vivo was found i•.
bear a direct relationship to the amount of -particulate catalase in the livers of the rat.
mouse, and guinea pig.
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' The abbreviation used is: AT, 3-amino-1,2,4-
triazole.

In the preceding study (1) it was con-

cluded that whereas the peroxidative sys-
tern involving hepatic catalase (H 202 : H202
oxidoreductase, EC 1.11.1.6) plays an im-
portant role in the oxidation of methanol
in the rat, it is of little importance for this
purpose in the monkey. This conclusion

rA was based partly on the observation that
3-amino-1,2,4-triazole greatly decreased
the rate of methanol oxidation in the rat
in vivoJI but had no measurable effect
on methanol oxidation in the monkey.Be-
cause AT2 	almost completely In Ibited
hepatic catalase activity in both species,
and because the monkey harbors an abun-
dance of hepatic catalase, the question was

o
' This work was performed while the author

d A b R ublic

raised as to why AT was without at lea:
some recognizable effect on methanol oxida-
tion in the monkey, even though alcoho'
dehydrogenase seemed to be mainly re-
sponsible for methanol oxidation in thi•
species. The amount of peroxidative er-
tivity that can occur in the rat appears tn
depend not so much upon the quantity of
hepatic catalase present as upon the r:'i
of hydrogen peroxide generation (3. 4
If the peroxide-generating systems :a,
more deficient in the monkey than tlj,:
are in the rat, this would account for ti.

failure of the peroxidative system to ex, -:
a role in methanol oxidation in the monkey
An evaluation of the rate of hydrogen
peroxide generation in vivo is not readily
amenable to experimental design. Howev
two other possibilities can be studie
readily and they could account for the Ion
level of the peroxidative activity in tho
monkey: (a) while there is abundar::
catalase in the hepatic cell of the monke y .
its distribution may be such that much o'.
it does not have intimate access to tl:;
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oxidoreductase, EC 1.1.3.4) was a purified
preparation purchased from Nutritional
Biochemicals Corporation.

Animals. The following animals were
employed (males) : rhesus monkeys (1.6-
2.7 kg), Sprague-Dawle

y rats (250-350 g),
English shorthair guinea pigs (300-400 g),
and Webster Swiss mice (19-25 g).

Fractionation of liver homogenates. The
animal was decapitated; the liver was re-
moved quickly, blotted on filter paper, and
weighed; and a 10% (w/v) homogenate
was prepared in ice-cold 0.25 M sucrose
solution. Excessive homogenization is known
to affect the subeellular distribution of
catalase activity in liver homogenates (9) ;

6 hand strokes in a glass nomu ill^^l • i • -
omogenate was centrifuged at 20,000 g for

20 min. The supernatant was designated
the soluble fraction . The pellet was washed
once by resuspending it in 0.25 M sucrose
solution and centrifuging it at 20,000 g for
10 min. The washed pellet, designated the
mr,rticulate fraction, was resuspended in
sufficient amounts of 0.25 M sucrose solution
or 0.25 M sucrose solution containing 0.5%
Triton X-100 to restore its initial volume.
Triton X-100 was used to solubilize the
particulate catalase, thereby enabling as-
sessment of the total catalase activity of
the particulate fraction (9) . Homogeniza-
tion and fractionation procedures were
conducted at 0-5°.

Measurement of hepatic catalase activity.
Two methods were used to measure the
eatalatic activities of the soluble and
particulate liver fractions. Feinstein's pro-
cedure (10) utilizes sodium perborate as
a substrate at 37°. Adams' method (11)
employs H 2O= as a substrate at low temper-
ature, and the procedure was performed as
described originally except that the reaction

m New England Nuclear Corporation;
specific activity was determined as

>=cribed previously (2) . 3-Amino-1,2,4-
iazole was generously supplied by the
^^-^erican Cyanamid Company; it was
, :rifled as described previously (8). Triton
•i-100 was obtained from Rohm and Haas
Ioapany. Glucose oxidase (,O-D-glucose:02
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MATERIALS AND METHODS
hhe rateo f y dr noe

Chemicals. Methanol-14C was purchased
h t 0°was conducted at 4 rather t an

When Feinstein's method was used, cata-
lase activity was expressed in Kat. f. units
as defined by von Euler and Josephson
(12). When Adams' method was used,
catalase activity was expressed in Adams
units derived from a predetermined stand-
ard curve (11).

Measurement of methanol metabolism
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by liver preparations. Measurement of the
peroxi a Ive activity of the liver prepara-
tions was based on the original observation
of Strittmatter (13), later confirmed by
Tephly and co-workers (14), that without
suitable supplementation with coenzymes
ratliver homogenates do not oxidize rnetf-
anol beyon the formaldehyde stage. One
milliliter of appropriately diluted liver
preparation was mixed with 8 ml of a
solution containing the following materials:
semicarbazide, 150 µmoles; nicotinamide,
80 µmoles; magnesium chloride, 40 µmoles;
phosphate buffer (pH 7.4), 24 µmo les;
glucose, 20 mg; and purified glucose oxidase
preparation, 0.1 mg. The mixture was in-
cubated at 37 0 in stoppered 25-m1 Erlen-
meyer flasks containing air in a Dubnoff
metabolic shaker (120 oscillations/min).
After an equilibration period of 10 min,
the reaction was started by adding 1.0
ml of a solution containing 100 µmoles of
methanol. Two-milliliter aliquots of the re-
action o mixture were removed at 0 and 20
min (during which the time the reaction
had been determined to proceed at a con-
stant rate) and placed in 50-ml pear-
shaped distilling flasks containing 4 ml of
a 30% trichloracetic acid solution. The
mixture was distilled and the distillate (4
ml) was assayed for its formaldehyde con-
tent by the method of MacFadyen (15) .

All values were corrected for a predeter-
mined 10% distillation loss.

Studies in vivo. The metabolism in vivo
of methanol-14C in rats, guinea pigs, mice,
and monkeys was studied as described pre-
viously (1, 2). Rats, guinea pigs, and
monkeys were placed singly in the metab-
olism chambers, but mice were studied
in groups of five. Immediately upon com-
pletion of the experiments in vivo, livers
were removed from the animals for deter-
mination of their catalatic and peroxidatic
activities.

RESULTS

Effect of AT on the oxidation of meth-
anol-14C by the mouse and guinea pig. In
Figs. 1 and 2 it can be seen that AT in-
hibits the oxidation of methanol- 14C in the
intact mouse and guinea pig by about 50%,

Hours

Fro. 1. Effect of 3-amino-1,54-triazole on n,
anol-"C oxidation in the mouse in vivo

0---*, Methanol-"C (lg/kg); 0L
methanol'4C (1 g/kg) 1 hr after the adminis-n.
tion of AT (1 g/kg). Rates of "CO2 prod&::
are significantly different from control rat«
each time interval (p < .01). Each point r•
resents data obtained from three groups of fi
mice. All injections were made intraperitonea:

which is about the same degree of inhi!,.
tion produced by AT in the rat (2). Th:-
is interpreted to mean that in all thr: •
rodents catalase plays an important ro:'
in the peroxidative oxidation of methan .

Intracellular distribution of catalasc
the monkey, rat, guinea pig, and mousc.1
Fig. 3 comparisons are made of the di• •

15
0—

0 10

= o

= 0 5

0

Hours

Fta. 2. Effect of 3-amino-1,8,4-triazole on in
anol-'C oxidation in the guinea pig in viva

--- S, Methanol-14C (1 g/kg) ; 0-
methanol-'4C (1 g/kg) 1 hr after the administr:
tion of AT (1 g/kg). Rates of "CO: produrri-
are significantly different from control rates 5
each time interval (p < .01) . Each point m;
resents data obtained from three animals..'
injections were made intraperitoneally.
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catalatic and peroxidatic activities of
whole homogenates and of soluble and
particulate fractions from the same ani-
mals. The catalatic and peroxidatic activ-
ities of the intact livers were estimated
from the studies in vitro and the known
weights of the livers in each of the animals
studied. It can be seen that there are no

consistent relationships between the rates
of methanol-14C oxidation in vivo and the
catalatic and peroxidatic activities of either
the whole homogenates or the soluble frac-

tions, but that in the mouse, rat, a:.:
guinea pig the catalatic and peroxidaf::
activities of the particulate fractions par:,'
lel the rates of methanol oxidation o:-
served to occur in the intact animals. Th,:.
the mouse, with total particulate catalat.
and peroxidatic activities about twice thou
found in the whole livers of the rat ar.:
guinea pig, oxidizes methanol- 14C in vi'

at about twice the rates seen in the othi
two rodents. Comparing Fig. 3 with Fi:
5, it can be seen that the mouse posses

0 I €1 fl 1`•111 Ii II ti to t:n 
c
'J:j [j ' 0

MSRGM MSRGM MSRGM

Fia. 5. Relationship between the oxidation of methanol in vivo and catalatic and perori•>:

activities of liver fractions
Extrapolations of values of hepatic catalatic and peroxidatic activities in vitro to values based

the weights of the whole animal were made by using the known weight of liver per kilogram of be±
weight in each species: 70 g for the mouse (Ms), 40 g for the rat (R), 40 g for the guinea pig (G), =:

20g for the monkey (M).

Mol. Pharmacol. 4, 484-491 (1968)
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er total particulate catalatic and per-
:tic activities than the rat and guinea
not because of higher activities per
i of liver, but because the mouse has

;auger liver per unit of body weight.
The monkey is seen to bear little resem-
.nee to the rodents when its rate of meth-
..01.14C oxidation is related to catalatic

•l peroxidatic activities; much more
;h;uiol is oxidized in

thecatalase
tha

activ't ofounted for by activity
... particulate fraction. Taken with the

•. vious finding that AT has no effect on
. oxidation of methanol in the intact
,nkey (1), this observation strengthens

view that methanol must be oxidized
this species by some enzyme system

her than one involving hepatic catalase.
Relationsh

ip between catalatic and per-

-datic activities of hepatic catalase in

crent species. In Fig. 6, data taken from
^cious figures have been applied to show

ratio of peroxidatic to catalatic ac-

tivities in liver fractions from four species.
With respect to relative catalatic andper-
oxidatic activities, there would appear
be little qualitative difference in the cata-
lase found in the soluble and particulate
fractions from the liver of any given
species. However, it is apparent that when
compared to the enzyme from rodents,
which shows relatively similar ratios of the
two activities, the hepatic catalase from
the monkey has a much lower ratio of per-
oxidatic to catalatic activity. This qualita-
tive difference between hepatic catalase
from the monkey and hepatic catalase
from rodents further explains why the
peroxidative mechanism involving catalase
may be of lesser importance in the metab-
olism of methanol in the monkey than in
rodents.

DISCUSSION

Several factors combine to explain why
3-amino-1,2,4-triazole depresses methanol
oxidation in rodents, but not in the monkey.
The rate of methanol oxidation in vivo in

rodents is directly related to the amount of
particulate catalase in the liver. The
monkey has a higher concentration of
catalase in the liver than any of the
rodents in this study, but the intracellular
distribution of this catalase is such that

the amount in the particulate fraction per

pram of liver is about the same or sli

less than that found in the rodents. How-
ever, t e weight of the liver in the monkey,
relative to the body weight, is less than half
that of the mouse. Thus, on a per kilogram
of body weight basis, the amount of
particulate hepatic catalase in the monkey
is one-half that of any of the rodents, or
less. The potential for peroxidative oxida-
tion in the monkey is further reduced by
the relativel low eroxidatic activity of
man ey catalase as compared to that of
catalases found in rodents.

If there is a direct correlation between
particulate hepatic catalase activity and
the amount of methanol oxidation that can

occur peroxidativel
y in vivo, as the evi-

dence strongly suggests, it can be calcu-
lated that the monkey possesses a func-
tional peroxidative mechanism t at Is on y

Mol. Pharmacol. 4, 484-491 (1968)
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20% of that found in the rat. AT reduces
e rate of methanol oxidation in the intact

rat from the normal rate of 24 mg/kg/hr
to 12 mg/kg/hr (2). By analogy, methanol
oxidation should be reduced by AT in the
monkey by 0.2 X 12, or 2.4 mg/kg/hr.
This would represent a reduction of only
6% of the 37 mg/kg/hr of methanol kngwn
to be oxidized by the monkey in vivo (1) .
A reduction of this magnitude would not
be revealed readily by the methods of this
study. This calculation is made with the
assumption that the rates of hydrogen
peroxide generation are about equal in the
rat and the monkey. The studies of Good-
man and Tephly (16, 17) suggest that the
monkey generates less H 202 than the rat.
This would mean that even less than 6%
of the rate of methanol metabolism in the
monkey could be accounted for by per-
oxidative activity.

From the data in vitro it can be cal-
culated that only about one-fifth of the
particulate catalase is functioning maxi-
mally in the oxidation of methanol in vivo
in the rat, mouse, and guinea pig. This
could mean that not all the catalase found
in the particulate liver fraction is mor-
phologically located so that it can couple
with the peroxide-generating mechanisms.
It could also' mean that the rate of H202
generation is rate-limiting in the over-all
peroxidative reaction. When measurements
of peroxidative activity are made in vitro,
the liver fractions are highly diluted and
excess 11202 is provided, conditions that
favor maximum conversion of catalase to
catalase—H 202, the complex required for
the oxidation of methanol (18) . However,
this abundance of H 202 does not exist in
vivo, and the amount of catalase—H2O2
present at any given moment will relate to
the equilibria existing between H 202, cata-
lase, catalase—H 202, and methanol.

AT exerts its inhibitory effect not on
catalase per se, but on the catalase—H202

complex (19-21). Because a peroxidative
reaction is required for AT to produce its
inhibitory effect, and because AT is as
effective an inhibitor of catalase in the
monkey as it is in the rat, it might be
argued that peroxidation proceeds well in

both species and therefore, if catala>;
involved in methanol oxidation, it
play as large a role in the monkey ;,;
does in the rat. This argument would i:
the qualitative features of the two pc:
dative reactions involving AT and n:. •

anol. The reaction of AT with cata..
11202 is irreversible or virtually so. Tb..
only a small amount of H 202 is neede •
inactivate all or most of the catalase cc.
tamed in the liver, whereas 1 molecu;,-
H202 is required each time 1 moleeu'.c
methanol is converted to formaldel;r ;.
Neither monkeys nor rodents pro
enough H 202 to permit full utilization
their hepatic catalase for peroxida;jV
functions, but enough H 20 2 is gener. .
to allow AT to inhibit their hepatic e:, ..
lases almost completely.

The question invariably arises w}:.
studies are made of the partition of c
lular components between soluble a:
particulate fractions of a cell as to iv!,:
effect homogenization may have had. Th,
is no doubt that prolonged homogenizatir
releases catalase from the particulate f.
the soluble fraction (9). In the currc•r•
studies it is not known how much cat:
was released from the particles thron_'
homogenization, but the remarkable deg

of correlation between peroxidative ar•
tivity in vivo, as measured by methan:
metabolism, and the amount of catalat:
and peroxidatic activities found in tk
particulate fractions from the livers of t^-
mouse, rat, and guinea pig, suggests th:::
the partition of catalase activity seen
vitro was not greatly different from ti ..-
which existed in vivo.

ACKNOWLEDGMENTS

This research was supported by United St
Public Health Service Grant GM-10930. Part r''
this material appeared in abstract form (Pl.-: •

-macologist 8, 220 (1966)] and in a thesis by
B. Makar in partial fulfillment of the requir
meats for the degree of Doctor of Philosor%.•
in the Department of Pharmacology, Univer

•

-of Minnesota, 1966.

Mol. Pharmacol. 4, 484-491 (1968)



,'a

CATALASE DISTRIBUTION AND METHANOL OXIDATION
491

efore, if catalase m
oxidation, it sh y :;+,
in the monkey rte r,
gument would i1 I:-.
;s of the two perov.
ving AT and nv ,t .
AT with catal.

it virtually so. Th.
of H 202 is needs.; tc,
of the catalase ror.-

hereas 1 molecule c'.
i time 1 molecule c.!
>d to formaldehc^;•
or rodents proiluc,
it full utilization e'

ise for peroxi^lati:.
h H,02 is gen(r:+t.-•.
it their hepatic att.
1y.
ariably arises w•hr.^
the partition of co ;-

)etween soluble ar. f
of a cell as to whs,
may have had. Tht:^

onged homogenization
^m the particulate t^

(9). In the currer.-
,rn how much catala'
the particles throuc'
the remarkable decree
seen peroxidative ac•
acasured by methane'
e amount of catalati^
tivities found in th<
from the livers of th-'

nea pig, suggests that
;alase activity seen i-
;lv different from tha•

R. E. Parks, Jr. and G. J. Man-
12. H. von Euler and K. Josephson, Ann. Chem.

p B. Tephl
y, Liebigs 452, 158 (1927)

oering, J. Pharmacol. Exptl. Therap. 143, .

4. 13, P. A. J. Strittmatter, The biological oxidation292(19^)
of methanol and formaldeh

yde. Thesis sub-

D 
R. Van Harken, Role of the hepatic

-system in the metal'-catalase-peroxidative
mitted to Harvard University, 1953.

Tephly, R. E. Parks, Jr. and G. J.
olism of methanol by the rat. PhD. thesis,

1
T. R.

Mannering, J. Pharmacol. Exptl. Therap.

University of Minnesota, 1964. 131, 147 (1961).

D. R. Van Harken, T. R. Tephly and G. J. ,
15. D. A. MacFadyen, J. Biol. Chem. 158, 107

,Dfannering Pharmacolog
ist 6, 187 (1964). ,^-•^.'(194b) .

C. de Duve
,Harvey Lect. 59, 49 (1965). 16. J. I. Goodman and T. R. Tephly, Federation

P. Baudhuin H. Beaufay and C. de Duve, J., Pros. 26, 616 (1967).
R. Tephly, Mol•

Cell Biol. 26, 219 (1965). 17. J. I. Goodman and T.
R, N. Feinstein, M. Hampton and G. J.

Enaymologia 16, 219 (1953).
Pharmacol. 4, 492 (1968).

18. B. Chance, Acta Chem. Scand. 1, 236 (1947).
Cotter,

• G. J. Mannering and R. E. Parks, Jr., Science 19. T. R. Tephly, G. J. Mannering and R. E.
Proc. 19, 30 (1960).

126, 1241 (1957).
B.E A.A Burgess ,  Brit. J.

Parks, Jr., Federation
20. T. R. Tephly, G. J. Mannering and R. E.

D. AdamsH. andan
Cancer 11, 310 (1957). Parks, Jr., J. Pharmacol. Exptl. Therap.

R. N. Feinstein, J. Biol. Chem. 180, 1197 134, 77 (1961).
21. E. Margoliash, A. Novogrodsky	and A.

(1949).
J. Cancer 4, 183 (1950). Schelter, Biochem. J. 74, 339 (1960)•

• D. H. Adams, Brit.

LEDGMENTS

ipported by United Scan`
Grant GM-10930. Part e`

I in abstract form [Pt4"
6) ] and in a thesis by

fulfillment of the req»in
of Doctor of Philosorl•'
Pharmacology, Univerci'••

ERENCES

R. Tephly and G. J. r[9«
2rmacol. 4, 471 (19651.

Mol. Pharmacol. 4, 484-491 (1968)


