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Abstract

Background: The microtubule associated protein tau is the principle component of neurofibrillar
tangles, which are a characteristic marker in the pathology of Alzheimer's disease; similar lesions
are also observed after chronic alcohol abuse. Formaldehyde is a common environmental
contaminant and also a metabolite of methanol. Although many studies have been done on
methanol and formaldehyde intoxication, none of these address the contribution of protein
misfolding to the pathological mechanism, in particular the effect of formaldehyde on protein
conformation and polymerization.

Results: We found that unlike the typical globular protein BSA, the natively-unfolded structure of
human neuronal tau was induced to misfold and aggregate in the presence of —0.01 % formaldehyde,
leading to formation of amyloid-like deposits that appeared as densely staining granules by electron
microscopy and atomic force microscopy, and bound the amyloid-specific dyes thioflavin T and
Congo Red. The amyloid-like aggregates of tau were found to induce apoptosis in the neurotypic
cell line SH-SY5Y and in rat hippocampal cells, as observed by Hoechst 33258 staining, assay of
caspase-3 activity, and flow cytometry using Annexin V and Propidium Iodide staining. Further
experiments showed that Congo Red specifically attenuated the caspase-3 activity induced by
amyloid-like deposits of tau.

Conclusion: The results suggest that low concentrations of formaldehyde can induce human tau
protein to form neurotoxic aggregates, which could play a role in the induction of tauopathies.

Background
Although many studies have been done on methanol and
formaldehyde intoxication [1,21, none of these address
the contribution of protein misfolding to the pathological
mechanism, in particular the effect of formaldehyde on
protein conformation and polymerization. Damage of

neuronal cells caused by misfolded protein aggregates is a
subject of intense research interest. It has become increas-
ingly clear that many neurodegenerative diseases are
related to aggregation and deposition of misfolded pro-
teins, such as tau [3-51, beta amyloid [6-91, alpha-synu-
clein 110,111 and polyglutamine aggregates 112,131. The
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abnormal deposition of misfolded protein causes the mal-
function of a distinctive set of neurons 1141. Alzheimer's
disease and some other dementias are related to patholog-
ical deposition of proteins. Tau is a microtubule-associ-
ated protein, which is the main constituent of paired
helical filaments (PHFs) present in neurofibrillary tangles
14,51. In neurodegeneration, tau protein accumulates in
lesions composed of fibrillar aggregates displaying the
cross -sheet diffraction pattern of "amyloid" 1151. Inter-
estingly, neurofibrillary tangles have been found in brains
of chronic alcoholics possessing neuropathological signs
of thiamine-deficiency, suggesting that tau misfolding
may be involved in the alcohol-induced pathological
pathway 116-181.

Methanol ingestion is an important public health concern
because of the selective actions of its toxic metabolites,
formaldehyde and formic acid, on the retina, optic nerve
and central nervous system 111. Severe and even fatal ill-
ness has been reported after illicit consumption of "indus-
trial methylated spirits" 121. Methanol is oxidized by
alcohol dehydrogenase to produce formaldehyde, which
is further oxidized to formic acid by formaldehyde dehy-
drogenase. Metabolism of methanol to formaldehyde via
peroxisomal enzymes has been demonstrated in rat retina
in vitro 1191, and the presence of cytoplasmic aldehyde
dehydrogenase activity has been demonstrated in several
regions of the rat and mouse eye, including the retina
120,211. Susceptibility to methanol toxicity is dependent
upon the relative rate of formate clearance. However,
methanol toxicosis induces progressive damage to the
central nervous system. It is hard to explain this chronic
damage by local accumulation of formic acid alone.

Formaldehyde is a common environmental contaminant
found in paint, clothes, medicinal and industrial prod-
ucts, and is a component of diesel and gasoline exhaust
122,231. Recently, Sarsilmaz and colleagues have reported
that formaldehyde exposure may cause various morpho-
logical changes in the rat brain 124,251. Neurotoxic effects
have been also confirmed by acute and subacute formal-
dehyde exposure in mice 1261. Pitten et al. have classified
formaldehyde as "probably neurotoxic" 1271, because
they found rats exposed to formaldehyde need more time
and make more mistakes than the animals of the control
group while going through a maze. As a crosslinking
agent, formaldehyde readily reacts with thiol and amino
groups 1281, causing polymerization of proteins. In semi-
carbazide-sensitive amine oxidase (SSAO)-mediate
pathogenesis of Alzheimer's disease, formaldehyde inter-
acts with -amyloid and produces irreversibly cross-linked
neurotoxic amyloid-like complexes 129-311. Therefore,
the potential effect of formaldehyde on protein misfold-
ing may be significant, even if formaldehyde remains in
the human body for only a short time.

Here, we examine the role of formaldehyde in induction
of protein misfolding. In particular, we investigate the
effect of formaldehyde on the aggregation of human neu-
ronal tau in vitro and the toxicity of tau aggregates in
mammalian neuronal cells. The results imply that low
concentrations of formaldehyde are sufficient to induce
formation of amyloid-like tau aggregates, which in turn
induce apoptosis of both human neuroblastoma cells
(SH-SY5Y) and rat hippocampal cells.

Results
Formaldehyde at low concentrations induces tau to form
amyloid-like aggregates
In order to investigate the potential of formaldehyde to
induce protein misfolding leading to neurodegenerative
disease, we studied the effect of low concentrations of for-
maldehyde on the biochemical and biophysical proper-
ties of human neuronal tau. Incubation with increasing
concentrations of formaldehyde from 0.01-0.5% was
observed to result in formation of increasing amounts of
SDS-insoluble aggregates of tau, as detected by SDS-PAGE
(Fig. 1A; Fig. 1C, curve 1) or light scattering (Fig. 1C, curve
2), similar to our previous study 132,331. In contrast,
when BSA was incubated with formaldehyde under the
same range of conditions, no significant degree of aggre-
gation could be detected by SDS-PAGE (Fig. 1B; Fig. 1D,
curve 1) or by light scattering (Fig. 1D, curve 2). This sug-
gests that tau is more susceptible to the effects of formal-
dehyde than typical globular proteins.

We then compared the time course of the aggregation
reaction in the presence (Fig. 1E, curve 1) and absence
(Fig. 1E, curve 2) of 0.1% formaldehyde by monitoring
the degree of light scattering. In both cases a sigmoidal
curve was observed. However, the presence of formalde-
hyde both reduced the lag time for aggregation and
resulted in a greater degree of light scattering (Fig. 1F). The
presence of formic acid had no detectible effect on tau
aggregation (data not shown). This further suggests that
formaldehyde promotes aggregation of tau. In contrast,
incubation of BSA under the same conditions showed lit-
tle aggregation in the absence (Fig. 1E, curve 3) or pres-
ence (Fig. 1E, curve 4) of formaldehyde.

OPT is commonly used as a fluorescent probe to detect
both a- and E-amino groups of a protein 1341. As shown
in Fig. 2A, the fluorescent intensity at 455 nm decreased
as the formaldehyde concentration increased. In 1% for-
maldehyde solution, the fluorescence could hardly be
detected under the same conditions, indicating that for-
maldehyde competed with OPT in the reaction with the
amino groups. The time course of the fluorescence
changes in the presence and absence of 0.005% formalde-
hyde monitored using OPT showed a marked difference
(Fig. 2B). The first order rate of the fluorescence change in

Page 2 of 16
(page number not for citation purposes)

http://www.biomedcentral.com/1471-2202/8/9


































97,600

66,200

97,600

66,200

0.30.0 0.3 0.6

80C

Ls 60

< 40
C)

20

0
0

600 r -"w"' 200
= c
W D

450 2 L., 150-
6 E

300 n
-(2 4 nn
< I UU T ,

-5' M
a .-C

150 c 50
@ c,. S

-0 c
C (III 0

0 0.0

600 E

-450
6

1 -300

2 - 150

0
0.6

Concentraion of Formaldehyde (%) Concentraion of Formaldehyde (%)

E 1600

1200

g 800

400

0)

FE

Time (h)

BMC Neuroscience 2007, 8:9 http://www.biomedcentral.com/1471-2202/8/9

A
M 0 0.01 0.05 0.1 0.5 (%) M 0 0.01 0.05 0.1 0.5 (%)

C D

Figure I
Effect of formaldehyde on tau aggregation at different concentrations. (A) Recombinant htau-40 (20 final con-
centration) was incubated with formaldehyde at desired concentrations in 100 mM phosphate buffer (pH 7.2) at 37°C for 24 h
and aliquots (10 W) were loaded for 10% SDS-PAGE. Lane M contains molecular mass standards. (B) BSA was used as a con-
trol. (C) Gray densities of tau polymers on SDS-PAGE were measured (curve 1) and changes in the light scattering of tau with
formaldehyde at different concentrations were detected (curve 2). (D) The gray densities of BSA monomers from panel B
(curve 1) and the light scattering of BSA (curve 2). (E) Tau-40 (1.2 final concentration) was incubated with 0.1 % formalde-
hyde and changes in the light scattering at 480 nm were measured at different time intervals in the presence (curve 1) or
absence (curve 2) of formaldehyde. BSA alone (curve 3) or BSA incubated with formaldehyde (curve 4) was used as controls.
(F) The same data as shown in panel E is plotted on a semi-logarithmic scale [36].
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the absence of formaldehyde (1.03 x 10 
3
s 

1 ) was greater
than that in the presence of formaldehyde (3.66 x 10 4s
1 ). This demonstrates that formaldehyde reacts with pro-
tein tau and blocks amino groups.

The time course of tau aggregation in the presence and
absence of formaldehyde was also monitored using the
fluorescent dye ThT, which was considered to be highly
specific for amyloid-like structure 1351. Under the condi-
tions used, self-aggregated tau showed only minor change
in the ThT fluorescence (curve 2, Fig. 3A and 3B). Acetal-
dehyde-treated tau likewise did not show any significant
change in the ThT spectrum (curve 3, Fig. 3A), compared
with a protein-free control (curve 4, Fig. 3A). Interestingly,
however, formaldehyde-induced aggregation of tau
showed a significant change in the intensity of ThT fluo-
rescence (curve 1, Fig. 3A), and the sigmoidal time course
of aggregation detected by ThT binding (curve 1, Fig. 3B)
was similar to that observed by light scattering (curve 1,
Fig. 1 E). Formaldehyde-treated tau was also found to bind
Congo Red, causing a red shift in the spectral maximum
from 470 nm to 510 nm (curve 1, Fig. 3C), as observed for
amyloidogenic tau peptides 1361, compared with acetal-
dehyde-treated tau, native tau or Congo Red alone as con-
trols (curves 2, 3 and 4, Fig. 3C). Negatively-stained
electron micrograph images of the formaldehyde-induced
aggregates showed dense granules (Fig. 4A), whereas self-
aggregated tau as control showed PHF-like structures by
transmission electron microscopy (Fig. 4B), similar to the
results reported previously 151. By AFM, protein tau
treated with 0.05% formaldehyde also showed globular
particles on the mica surface. The horizontal diameter of
the tau particles was 18.65 ± 2.66 nm (mean ± SD, Fig.
4C) about twice the size of native tau (9.94 ± 1.96 nm, Fig.
4D). However, fibril-like aggregates could not be observed
in the formaldehyde-treated tau that was incubated for
over a week.

Consequentially, we measured the activity of the different
types of tau aggregates in tubulin assembly. While the
spontaneously formed aggregates and those formed in the
presence of acetaldehyde, maintained a relatively high
level of residual activity, the formaldehyde-induced aggre-
gates of tau were practically inactive in promoting tubulin
assembly (Table 1). Together, these results indicate that
the presence of formaldehyde promotes the formation of
amyloid-like aggregates of tau, causing tau to become
inactive in tubulin assembly.

Conformational changes of amyloid-like tau aggregates
The ability of tau aggregates to bind the dyes ThT and
Congo Red suggests that the aggregated tau contains rela-
tively more -sheet structure compared with the natively
unfolded protein. To prove this prediction, htau 40 was
incubated in the presence or absence of formaldehyde and

then examined by circular dichroism (CD) spectroscopy.
In the absence of formaldehyde, both native tau and
acetaldehyde-treated tau showed CD spectra typical for an
unfolded protein as reported 137,381, with a broad mini-
mum of ellipticity centered at 205 nm (curves 2 and 3
respectively, Fig. 5A). The presence of formaldehyde led to
a noticeable change in the spectra so that the minimum
became wider and was shifted toward higher wavelength,
suggesting a substantial change from random coil to
structure consistent with the premolten globule folding
state (curve 1, Fig. 5A), similar to previous reports of an
increase in conformation in tau aggregation 137-391.
These data further support that formaldehyde-induced tau
aggregates contain partially folded structure that is
enriched in -sheet content in contrast to the initial con-
formation.

In addition to its secondary structure signature, the
premolten globule state is characterized by a partially col-
lapsed structure with a loosely packed hydrophobic core.
To confirm that the aggregates had partially folded charac-
ter, htau40 was incubated with formaldehyde and then
examined for the ability to bind ANS, a fluorescent probe
of surface-exposed hydrophobic patches 1401. ANS in
buffer alone (not shown) fluoresced weakly at the opti-
mum wavelength (Ex: 350 nm; Em: 480 nm) 1391, which
was unaffected by addition of increasing concentrations
of formaldehyde in the absence of tau (curve 4, Fig. 5B).
In contrast, ANS in the presence of formaldehyde-aggre-
gated tau fluoresced brightly (curve 1, Fig. 5B). A slight
increase in fluorescence intensity was detected for self-
aggregated tau (curve 2, Fig. 5B), indicating some PHF-
like structures could form as described previously 15,321.
Note that no marked increase in fluorescence intensity
was detected for acetaldehyde-treated tau (curve 3, Fig.
5B). This suggests that the enhanced fluorescent signal
observed came from the binding of ANS to altered confor-
mations of tau induced by formaldehyde.

Amyloid-like tau promotes apoptosis of neuronal cells
In order to investigate whether amyloid-like tau has an
effect on neurons, amyloid-like tau was added to neuro-
typic SH-SYSY cells after the residual formaldehyde had
been removed completely from the protein-deposits by
ultrafiltration (see Methods). Figure 6 illustrates that amy-
loid-like tau induces marked axonal atrophy and finally
the cells shrink into a spherical shape in the neuroblast-
oma culture. To tell whether this deposit-induced cell
death represented apoptosis, we examined two features of
apoptosis: the morphology (nuclear condensation and
fragmentation) and the biochemical (caspase activity)
changes of the cells. As shown in Fig. 7, morphological
evaluation of neuronal cultures using Hoechst 33258
staining with fluorescence microscopy revealed a signifi-
cant increase in the number of cells showing nuclear con-
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Figure 2
Reaction of formaldehyde with amino groups of neuronal tau. (A) Neuronal tau (final concentration 0.1 M) was
resuspended in phosphate buffer containing OPT (20 times molar excess compared to protein) in the presence of formalde-
hyde at different concentrations at 37°C for 120 min. The fluorescence (Ex340 nm/Em455 nm) was then measured. (B) Under
the same conditions, tau was incubated with (curve I) or without (curve 2) 0.005% formaldehyde and 2µM OPT. Aliquots
were then taken to measure the fluorescence at different time intervals. The data were plotted on a semilogarithmic scale as
described by Tsou et al. [59].
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Figure 3
Changes in fluorescence spectra of thioflavin T and absorption spectra of Congo Red in the presence of tau
deposits. (A) Thioflavin T (10 pM final concentration) was incubated with 0.1% aldehyde-treated tau (2 µM) in 100 mM potas-
sium phosphate buffer pH 7.2 for 15 min before measurement. Emission spectra of ThT were recorded (excitation at 450 nm)
in the presence of formaldehyde-treated tau (curve I), self-aggregated tau (curve 2), acetaldehyde-treated tau (curve 3) and in
the absence of protein (curve 4). (B) Kinetics of the increase in the fluorescence emission of ThT incubated with formaldehyde-
treated tau (curve I) or self-aggregated tau (curve 2). (C) Under the same conditions, Congo Red (5 pM final concentration)
was incubated with formaldehyde-treated tau (curve I), acetaldehyde-treated tau (curve 2) or native tau (curve 3) for 15 min
before measurement. Congo Red alone is shown as a control (curve 4).
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Figure 4
Tau deposits were imaged by transmission electron
microscopy and atomic force microscopy. Tau deposits
were formed by incubation of tau with formaldehyde in 100
mM sodium phosphate, pH 7.2, for one day. (A) Formalde-
hyde-treated tau deposits stained with uranyl acetate were
observed under the electron microscope (Bar: 100 nm); (B)
Tau (40 M) was incubated with heparin (1 mg/ml) under the
same conditions (Bar: 50 nm). (C) Formaldehyde-treated tau
deposits observed by AFM (Bar: 125 nm). (D) Tau alone as a
control was observed by AFM (Bar: 125 nm).

densation and fragmentation after incubation with
amyloid-like tau for 3 days (Fig. 7E). Under these condi-
tions, 0.1% formaldehyde solution ultrafiltered with 100
mM phosphate buffer (pH 7.2) was used as a control. No
marked characteristics of apoptosis could be detected by
Hoechst 33258 (Fig. 7D) in the presence of the solution
whose formaldehyde was removed by the ultrafiltration.
Further, no effect on cell morphology could be detected in
the presence of a similar dose of self-aggregated tau (Fig.
7B) or acetaldehyde-induced tau (Fig. 7C).

The effect of amyloid-like tau on cell viability was esti-
mated using the MTT assay 1411. As shown in Fig. 8A, the
percentage of viable cells in the culture decreased signifi-
cantly over the course of 72 h after treatment with amy-
loid-like tau. In contrast, the presence of self-aggregated

Table I : Activity of tau aggregates in tubulin assembly

• . °
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tau or acetaldehyde-treated tau had no effect on the
number of viable cells under the same conditions. Over
the same time period, the caspase-3 activity of cytosolic
protein extracts from the SH-SY5Y cells treated with amy-
loid-like tau was observed to increase, while the caspase-3
activity for the control cultures remaining constant (Fig.
8B). The effects of Congo Red on the ability of formalde-
hyde-aggregated tau to induce apoptosis in the SH-SY5Y
cell-culture were examined. The caspase-3 activity pro-
duced in response to treatment with formaldehyde-aggre-
gated tau was reduced significantly by addition of Congo
Red (Fig. 8C). Congo Red alone caused no detectable
effect on cell viability (not shown). This then suggests that
the ability of Congo Red to bind to amyloid-like tau con-
fers a protective effect on neurons, as has been observed in
the case of -amyloid 1421.

In order to further investigate the neurotoxicity of amy-
loid-like tau, we used flow cytometry analysis to examine
the effect of formaldehyde-aggregated tau on rat hippoc-
ampal cells (Fig. 9). Cells were incubated with tau aggre-
gates (after complete removal of formaldehyde traces, see
Methods) and then treated with the dyes Annexin V (AV,
an indicator of apoptosis) and propidium iodide (PI, an
indicator of cell necrosis) 1431. A clear increase was
observed in both the AV positive/PI negative (apoptotic)
and AV-positive/PI positive (late apoptosis, early necro-
sis) populations of primary hippocampal cells during the
time course of treatment with amyloid-like tau (Fig. 9B—

D). We also investigated the efficiency of amyloid-tau pro-
duced by treatment with different concentrations of for-
maldehyde to induce apoptosis. Incubation for 72 h with
amyloid-like tau induced by 0.1%, 0.05% or 0.01% for-
maldehyde each produced a significant decrease on the
proportion of apoptotic cells (23%, 22% and 15%, Fig.
9D—F, respectively).

Discussion
Methanol is an ocular toxicant that causes visual dysfunc-
tion often leading to blindness after acute exposure. The
physiological and biochemical changes responsible for
this toxicity are poorly understood 1441. According to a
recent report, humans are uniquely sensitive to the toxic-
ity of methanol, as they have limited capacity to oxidize
and detoxify formic acid. Thus, the toxicity of methanol in
humans is characterized by formic acidaemia, metabolic

Tau protein Specific Activity (A 350/s • mg x 10-3) Relative Activity (%)

Native tau 40.0 ± 1.02 100
Acetaldehyde tau 30.0 ± 1.98 75
Self-aggregated tau 10.0 ± 2.10 25
Formaldehyde tau 2.0 ± 0.28 5
Tubulin 1.3 ± 0.21 3

Specific activity was quantified by absorbance at 350 nm and the results represent the means ± S.D. Relative activity was as a percentage.
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Figure 5
Conformational changes of polymerized tau in formaldehyde solution. (A) Circular dichroism spectra of 2µM native
tau (curve 2), and tau incubated with 0.1% formaldehyde (curve I) or acetaldehyde (curve 3) at 37°C for 24 h. Scattering con-
tributions of the aldehyde were subtracted from the spectra. (B) Changes in the fluorescence of tau in the presence of ANS.
Tau (1.2 M final concentration) was incubated in 100 mM phosphate buffer (pH 7.2) with or without 0.1 % aldehyde at 37°C
overnight and then ANS (molar ratio: tau/ANS = 1/40) was added. Changes in the ANS fluorescence spectra at 480 nm for tau
incubated with formaldehyde (curve I), acetaldehyde (curve 3) or without aldehyde (self-aggregation, curve 2) were measured
by excitation at 350 nm. Formaldehyde alone (curve 4) is shown as a control.
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acidosis, blindness or serious visual impairment and mild
central nervous system depression or even death 11,441.
This view is based on the following two observations: (1)
methanol is metabolized to formaldehyde in liver cells
and also in neurons 124-27,451, although it is very rapidly
converted to formate; (2) SSAO-mediated generation of
formaldehyde can induce protein (i.e. -amyloid) cross-
linkage, deposition and subsequently plaque formation
in Alzheimer's disease 129-311.

In recent years, however, formaldehyde has been found to
be a neurotoxic molecule and to damage the prefrontal
cortex of rats including the hippocampus 146,471. These
results demonstrate the formaldehyde-induced neurotox-
icity to neurons. Our studies show that formaldehyde
induces neuronal tau to aggregate. Here, we show that
amyloid-like tau induces apoptosis of SH-SY5Y and hip-
pocampal cells. In fact, chemically, formaldehyde reacts
with thiol (our unpublished data) and amino groups
instantly, while misfolding of neuronal tau is a subse-
quent event. This suggests that amyloid-like tau may be
involved in methanol toxicosis, particularly the chronic
damage to neurons.

The microtubule associated protein tau plays an impor-
tant role in maintenance of the cytoskeleton. It promotes
and maintains assembly of microtubules, which are
required for axonal morphogenesis and transport 1481. In
recent years, PHFs, formed by misfolding of tau, were
found to be the main component of neurofibrillary tan-
gles involved in neurodegeneration, such as in Alzhe-
imer's disease. PHF-tau is not only commonly found in
Alzheimer's brain, but is also induced by simple incuba-
tion of native tau with some glycosaminoglycans, for
instance heparin, in vitro 15,321. Here, we found that for-
maldehyde-treated tau forms amyloid-like aggregates,
although not necessarily PHFs. Certainly, under the con-
ditions used, self-aggregated tau showed certain differ-

ences in structure compared with the aggregates induced
by exposure to formaldehyde. (1) Congo Red assays
showed that the dye absorbance increased by 16% after
incubation with formaldehyde-treated tau, and the
absorbance increase was accompanied by a red-shift to
510 nm. Similarly, when formaldehyde-treated tau was
added to ThT, a 4-fold increase in the emission intensity
and the emission maximum shifted to 482 nm were
observed. In contrast, self-aggregated tau induced little
change in the spectra of this amyloid-specific dye. (2)
Electron microscopy showed that formaldehyde-treated
tau had the appearance of granular amyloid-like aggre-
gates, with the diameters in the range of 20-100 nm,
unlike fibrillary structures in PHF-tau. (3) The results
observed by AFM further confirmed the presence of glob-
ular aggregates under the same conditions. The results
suggest that formaldehyde promotes the formation of
amyloid-like aggregates, which may represent a variant of
tau amyloid-like structure.

Recently, Kuret and colleagues described a tau assembly
pathway in which anionic inducers, for instance arachi-
donic acid favor a shift in the equilibrium between
unfolded and filamentous tau species. The microtubule
binding function of tau is lost and tau protein accumu-
lates in a partially folded, ThT-positive intermediate
which then self-aggregates into a hydrophobic nucleus (as
detected by fluorescent before the filament nucleus
elongates to form full fibrils 137,391. In contrast, formal-
dehyde-tau was not observed to elongate into filaments
on the experimental timescale used in this paper. How-
ever, as formaldehyde is not an anionic inducer, it is not
surprising that different characteristics are observed
between formaldehyde- and AA-induced tau aggregates.

As shown above, formaldehyde reacted with the amino
groups of tau, as demonstrated by the OPT test. Reaction
with formaldehyde is known to eliminate positive (NH2)

f

Figure 6
Contrast microscope image of cells treated with amyloid-like tau. The same SH-SY5Y cells were imaged after incu-
bated with tau deposits (2 M) for 0, 24, 48 or 72 h (A-D). Cells were visualized by inverted contrast microscopy. Bar = 25
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Figure 7
Hoechst staining of cells in the presence of amyloid-
like tau. Treatment with formaldehyde-treated tau resulted
in apoptotic death. Note that formaldehyde was removed
from the protein samples by ultrafiltration. SH-SYSY cells
were treated for 3 days with tau deposits (2 µM) induced by
pretreatment with 0.1 % formaldehyde. The cells were col-
lected and stained with Hoechst 33258. Nuclei were visual-
ized by fluorescence microscopy. Bar: 25 µm. (A) Control
culture in DMEM without serum. (B) Cells treated with self-
aggregated tau. (C) Cells treated with 0. I %-acetaldehyde-
treated tau. (D) Cells treated for 72 h with the mock solu-
tion without formaldehyde were collected and stained with
Hoechst 33258. (E) Cells treated with 0. I %-formaldehyde-
treated tau. The arrows designate the presence of apoptotic
nuclear profiles. Data are expressed as a percentage of the
control (cells treated with vehicle alone) and presented as
the mean ± SEM (n = 6). (F) Statistics of apoptotic cells from
A-E.

groups and to increase the net negativity of a protein [491,
which may lead to conformational changes in protein tau.
Unlike tau, however, formaldehyde at the low concentra-
tions used here did not induce any detectable degree of
aggregation or conformation change in BSA. According to
Schweers et al. (1994) [481, the conformation of native tau
features a "worm-like" or a "denatured-like" structure,
leaving E-amino groups of Lys exposed to the exterior of
the tau molecule, which would allow formaldehyde to
interact with the amino groups of tau. Furthermore, it has
been reported that neuronal tau is prone to aggregation

when incubated at 37°C or room temperature for over 10
h [5,321. On the other hand, in BSA, a globular protein,
not all of the E-amino groups are accessible for reaction
with formaldehyde. As a crosslinking agent for globular
proteins, formaldehyde is not so particularly efficient.
Glutaraldehyde is commonly used because the linker
region is long enough to bridge two protein molecules.
The fact that neuronal tau is prone to aggregate when
exposed to low concentrations of formaldehyde, probably
reflects the unfolded nature of its native conformation.

Khlistunova and colleagues found that the repeat
domains of intracelluar tau could aggregate and were toxic
to neuronal cells. The degree of tau aggregation and toxic-
ity depends on the propensity to form (3-structure
[15,38,50,511. In the present study, we found that extra-
celluar tau aggregates can induce neuronal cell apoptosis,
similar to the results obtained with extracelluar amyloid
or a-synuclein 17,8,43,52,531. This suggests that structures
enriched in (3-sheet are important for amyloid-like protein
aggregation and neurotoxicity. Hence intracelluar amy-
loid-like proteins can form neurotoxic aggregates in vitro.
In our experiments, a low concentration of formaldehyde
induced recombinant tau to aggregate into cytotoxic amy-
loid-like granular aggregates, providing a new potential
mechanism for tauopathies. However, our work provides
an effect on protein tau aggregation in vitro of low con-
centrations of formaldehyde. For an in vivo environment
where many other biochemical and biophysical factors
exist and interact with each other, further investigation
needs to becarried out.

Conclusion
Here we investigate the effect of low concentrations of for-
maldehyde on protein misfolding and aggregation. We
found that unlike the typical globular protein BSA, the
natively-unfolded structure of human neuronal tau was
induced to misfold and aggregate in the presence of
0.01% formaldehyde, leading to formation of amyloid-
like deposits that appeared as densely staining granules by
electron and atomic force microscopy, and bound the
amyloid-specific dyes thioflavin T and Congo Red. After
removal of the formaldehyde, the amyloid-like aggregates
of tau were found to induce apoptosis in the neurotypic
SH -SY5Y cells and in rat hippocampal cells, as observed
by Hoechst 33258 staining, assay of caspase -3 activity,
and flow cytometry using Annexin V and Propidium
Iodide staining. Control cells incubated with formalde-
hyde alone, or with tau aggregates formed in the presence
of acetaldehyde or in the absence of additives (and which
did not show appreciable binding of thioflavin T or
Congo Red), did not show signs of apoptosis. Further
experiments showed that Congo Red specifically attenu-
ated the caspase-3 activity induced by amyloid-like depos-
its of tau. The results suggest that low concentrations of
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Cell viability and Caspase-3 activity measurements over time. (A) Cell viability was measured by the MTT assay as
described in Materials and methods. (B) After SYSY cells were treated with different tau samples (2 M) for 24 h, cell lysates
were collected at the times indicated and used to measure caspase-3 activity. (C) SH-SYSY cells were treated with tau deposits
(2 M) in the presence or absence of 10 Congo red. Cell lysates were collected at the times indicated and caspase-3 activ-
ity was measured. Data are expressed as a percent of the control (cells treated with vehicle alone) and presented as the mean
± SEM (n = 6).
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formaldehyde may play a role in induction of tauopa-
thies.

Methods
Materials
The clone of recombinant human tau-40 was kindly pro-
vided by Dr. Goedert (University of Cambrige, UK) 141. 1-
anilinonaphthalene-8-sulfonic acid ( S), Thioflavin T
(ThT), Congo Red and 3-14,5-dimethylthiazol-2-y11-2,5-
diphenyl-tetrazolium bromide (MTT) were from Sigma.
Sephadex G-50, Q-Sepharose and SP-Sepharose came
from Pharmacia. Ultra pure formaldehyde and acetalde-
hyde were from Acros. Anti-tau monoclonal antibody
Tau-1 (MAB3420) came from Chemicon. Dulbecco'd
modified Eagle's medium (DMEM) came from NUNC.
AC-Asp-Glu-Val-Asp-paranitroaniline (Ac-DEVD-pNA)
was from Calbiochem. BSA came from Boehringer. All
other reagents were analytical grade and were used with-
out further purification.

Expression and purification of recombinant htau-40 and
microtubule binding assay
Neuronal tau, overexpressed in E. coli, was purified as
described previously 154-561. Briefly, the bacterial cells
were homogenized with a sonicator, boiled at 100°C and
the protein was purified using Sepharose-Q, Sepharose-SP
and Sephdex-50 chromatography columns. The concen-
tration of recombinant tau was determined spectrophoto-
metrically by measuring the absorbance at 280 nm 1571
and the protein appeared as a single band in SDS-PAGE
after purification. Assay of tau was performed with tubu-
lin according to Alonso et al. 131. Tau (4 M) was mixed at
4°C with purified porcine brain tubulin (1 mg/ml) and 1
mM GTP, all in polymerization buffer (100 mM MES, pH
6.7, 1 mM EGTA, and 1 mM MgC1 2 ) in a final volume of
500 p1 Once mixed, the samples were pipetted into
quartz microcuvettes (1 ml), equilibrated at 37°C, and
the absorbance at 350 nm was measured on a Hitachi U-
2010 spectrophotometer. The specific activity of tau was
the same as that described by Goedert et al. (1990) 1581.

Light scattering and electrophoresis
For protein aggregation experiments, tau (1.2 tM for light
scattering or 20 tM for electrophoresis) was incubated at
37°C with different concentrations of formaldehyde in
100 mM phosphate buffer (pH 7.2) for 24 h to allow the
reaction to reach completion. Acetaldehyde and BSA were
used as controls. For time course analysis, aliquots were
taken at different time inte rvals during incubation of tau
with or without formaldehyde. Light scattering was meas-
ured in a Hitachi F-4500 fluorescence spectrophotometer
(slits: Em = 5.0 nm and Ex = 5.0 nm) with excitation at
480 nm. Kinetic data were analyzed according to Tsou
(1965) 1591. Electrophoresis equipment was from Bio-
Rad.

Fluorescence and CD measurements
To test conformational changes, ANS was employed to
detect whether the aggregates of formaldehyde-treated tau
had exposed hydrophobic surface area. The fluorescence
at 480 nm of ANS after excitation at 350 nm for different
concentrations of tau was determined at room tempera-
ture using a Hitachi F-4500 spectrofluorometer. CD spec-
tra were recorded using a Jasco J-720 CD spectrometer.
The spectra were measured in 1-mm pathlength quartz
cuvettes, and data were collected from 195 nm to 250 nm
at 0.5-nm intervals. The samples were all in 100 mM
sodium phosphate buffer (pH 7.2). The bandwidth was
set at 1.5 nm (37°C). The spectrum baselines were cor-
rected using the spectrum for the buffer measured under
identical conditions.

OPT modification
Neuronal tau (final concentration 0.1 M) was resus-
pended in 50 mM phosphate buffer containing OPT
( molar ratio: reagent/protein = 20/1) in the presence of
formaldehyde at different concentrations at 37°C for 120
min. The fluorescence (Ex340 nm/Em455 nm) was then
measured (slits: Em = 5.0 nm and Ex = 5.0 nm). Under the
same conditions, tau was resuspended in 0.005% formal-
dehyde and 2 OPT; and aliquots were taken to meas-
ure the fluorescence at different time intervals. The data
were analyzed according to Tsou (1965) 1591.

Congo red and thioflavin T binding assays
The assay 1361 was performed by adding a freshly pre-
pared stock solution of Congo red in 100 mM potassium
phosphate (pH 7.2) to tau samples (2 M) to give a final
Congo Red concentration of 5 The ThT assay was per-
formed by adding a freshly prepared solution of ThT in
the phosphate to tau samples to give a final ThT concen-
tration of 10 tM 1351. The protein absorbance contribu-
tion was subtracted from the spectra.

Electron microscopy
For electron microscopy, tau (40 M) was incubated with
0.1% formaldehyde at 37°C for 24 h. The incubated sam-
ples were loaded on a carbon-coated grid for 2 min,
stained with 2% (w/v) uranyl acetate for 1 min, and then
dehydrated through a graded water-ethanol series. Sam-
ples were visualized under a JEOL JEM-100CX electron
microscope. Tau alone (40 M) was incubated under the
same conditions in the presence of heparin (1 mg/ml) as
a control.

Atomic force microscopy
Neuronal tau (final concentration 10 M) was incubated
at 37°C with formaldehyde (0.05%) in 25 mM phosphate
buffer (pH 7.2) over night. Then protein solution was
diluted using phosphate buffer and 3 0 of the sample (10
ng tau protein) was dropped onto the mica surface and
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left for 5 min at room temperature before drying with
nitrogen gas. The mica diaphragm was rinsed with ultra-
purified water 20 times and dried down with nitrogen gas
before observation under the atomic force microscope
(Mutiplemode-I, Digital Instruments). The horizontal
diameter at half height of a particle (globular protein) was
measured and the data were analyzed using the Nano-
scope 6.11r1 software.

Cell culture

SH-SY5Y human neuroblastoma cells were cultured in
DMEM medium supplemented with 100 Mimi penicillin
and 100 µg/ml streptomycin at 37°C in a humidified 5%
CO 2 incubator, as described 1601. The medium contained
10% newborn calf serum. Cells were grown to 70-80%
confluence in 25 mm diameter dishes and fed every
fourth day. Rat hippocampal cell cultures were estab-
lished from 18-day embryos, as described previously 1431.
Briefly, the hippocampi of the 1-day-postnatal Sprague-
Dawley rats were microscopically collected, digested in
0.025% trypsin and mechanically dissociated, and the
cells were plated on poly-L-lysine-coated plastic dishes (at
a final density of 2 x 10 6 cells/ml) or glass coverslips (at a
final density of 2.5 x 10 5 cells/ml). Cultures were main-
tained in Dulbecco's modified Eagle's medium (DMEM)
supplemented with 10% fetal bovine serum and 10% fetal
horse serum. For most experiments, the culture medium
was replaced with serum-free medium before the addition
of formaldehyde-treated tau. Native tau and acetalde-
hyde-treated tau were used as controls. Cells were incu-
bated with the samples for 72 h. As an additional control,
cells were treated with an equivalent amount of 100 mM
phosphate butter (pH 7.2) in the absence of tau, and no
effect was detected. To inhibit apoptosis, Congo Red was
incubated with the cells for 5-10 min before adding the
protein of interest. Photos were taken using an Olympus
IX-71 inverted contrast microscope.

Cell viability detection
As described by Mayo et al. 1411, viability was assessed by
reduction of MTT. MTT is a water-soluble tetrazolium salt,
reduced by metabolically viable cells to a colored, water-
insobule formazan salt. Cells were grown in 96-well plates
and treated with different concentrations of aldehyde-
aggregated tau or formaldehyde as described above, with
eight wells per experimental condition. The concentration
of aldehyde-aggregated tau used was 2 according to
the report that endogenous tau is present at 8-12 in
human brain 1611. After adding MTT (0.5 mg/ml final
concentration) to the culture medium of the cells, plates
were incubated at 37 ° C for 30 min. The assay was stopped
by replacement of the MTT-containing medium with 100

dimethysulfoxide (DMSO). Absorbance at 595 nm was
read by means of an ELISA plate reader. Each experiment
was repeated at least three times.

Apoptosis detected by Hoechst 33258 staining and assay of
caspase-3 activity

After incubation with tau, the formaldehyde was removed
from the protein sample by a series of dilution steps in an
Amicon Microcon-10 column. In order to verify the
absence of formaldehyde before use, the presence of the
aldehyde group was detected as described 1621, and no
residual formaldehyde was detected in the sample. Cells
were collected by centrifugation and the pellets were
washed twice with PBS. Pellets were then re-suspended in
PBS and stained with 10 µg/ml Hoechst 33258 for 10 min
at room temperature. Morphological evaluation of
nuclear condensation and fragmentation was performed
immediately after staining with a Nikon Microphot-FXA
fluorescence microscope. Colorimetric assay of caspase-3
was performed using a kit from Clontech, as described
previously 1631. Briefly, aliquots of cytosolic extracts (20

protein in 100 0 caspase-3 assay buffer consisting of
50 mM Hepes, pH 7.4, 100 mM NaC1, 0.1% CHAPS, 10
mM DTT, 1 mM EDTA, and 10% glycerol) were mixed
with equal volumes of 40 colorimetric tetrapeptide
substrate (Ac-DEVD-pNA) in the same buffer and moni-
tored using an ELISA plate reader.

Flow cytometric analysis
Cells undergoing apoptosis were detected with the use of
double staining with Annexin V-FITC/PI in dark according
to the manufacturer's instructions 1431. Briefly, cells
attached to plastic dishes were harvested by 0.25% trypsin
and washed twice with cold PBS. The cell pellets were sus-
pended in 1 x binding buffer (10 mM HEPES/NaOH, pH
7.4, 140 mM NaC1, 2.5 mM CaC1 2 ) at a concentration of
1 x 10 6 cells/ml. Then the cells were incubated with
AnnexinV- FITC and propidium iodide (PI) for 15 min
(22-25 °C) in dark. The stained cells were immediately
analyzed by flow cytometry (FAC Svantage SE, USA).
Annexin V-FITC selectively passed through the plasma
membranes of apoptotic cells and stained them with
green fluorescence. Apoptosis was considered to have
taken place in cells positive for Annexin V-FITC and nega-
tive for PI. All data were analyzed with Cell Quest software
(BD). Each measurement was carried out at least in tripli-
cate.
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