about the book . . .

This unique volume inaugurates a totally new phase in the study of chemical structure in relation to taste, and establishes a model for future food additive studies.

Aspartame addresses five major issues: history and development . . . metabolism of aspartame's component parts . . . sensory and dietary aspects . . . preclinical studies in animals . . . and aspartame metabolism in humans. The volume examines specific topics arising from human consumption, including aspartame ingestion during pregnancy, and use by diabetics and individuals heterozygous for phenylketonuria. The chapters discuss investigations of possible behavioral effects, and studies evaluating possible neurotoxicity and neuropathology.

Look to this authoritative sourcebook first for a truly informed perspective! Aspartame serves as an unequaled reference for nutritionists, food scientists, toxicologists, biochemists, dieticians, taste physiologists, physicians, dentists, and consumer groups.

about the editors . . .

LEWIS D. STEGINK is Professor of Pediatrics and Biochemistry at the University of Iowa College of Medicine, Iowa City. He received the B.A. degree (1958) from Hope College, and the M.S. and Ph.D. degrees (1963) from the University of Michigan. Dr. Stegink received the Mead Johnson Award of the American Institute of Nutrition (1976), and is on the editorial boards of the Journal of Nutrition and Journal of Parenteral and Enteral Nutrition. He has authored or co-authored over 120 papers on various aspects of biochemistry, nutrition, and pediatrics. Dr. Stegink is a member of numerous professional societies.

L. J. FILER, JR. is Professor of Pediatrics at the University of Iowa College of Medicine. He received the B.S. degree (1941) and Ph.D. degree (1944) from the University of Pittsburgh, and the M.D. degree with honors (1952) from the University of Rochester School of Medicine and Dentistry. Dr. Filer has served on various committees of the American Academy of Pediatrics, National Academy of Sciences, National Institutes of Health, and American Heart Association. In 1981, he received the Joseph Goldberger Award in Clinical Nutrition from the American Medical Association. Dr. Filer has authored or co-authored over 150 papers on a wide range of subjects relating to nutrition and pediatrics, and has served on the American Board of Nutrition since 1981.

Printed in the United States of America

marcel dekker, inc. / new york • basel
ASPARTAME
Physiology and Biochemistry

edited by
Lewis D. Stegink
L.J. Filer, Jr.
University of Iowa
College of Medicine
Iowa City, Iowa

MARCEL DEKKER, INC.
New York and Basel
Preface

...content. Baker dis...

...ected by Horwitz.

...s that aspartame ingestion affects brain

...more demonstrate aspartame safety may

Lewis D. Stegink
L. J. Filer, Jr.

Contributors

Arnold E. Applebaum, Ph.D. Assistant Professor, Department of Anatomy, University of Iowa College of Medicine, Iowa City, Iowa

George L. Baker, M.D.* Professor, Department of Pediatrics, University of Iowa College of Medicine, Iowa City, Iowa

Anne F. Bauman Research Technologist, Department of Anatomy, and Research Assistant, Department of Surgery, University of Illinois at Chicago, Chicago, Illinois

William H. Bowen, B.D.S., Ph.D. Chairman, Department of Dental Research, University of Rochester School of Medicine and Dentistry, Rochester, New York

George T. Bryan, M.D., Ph.D. Professor, Department of Human Oncology and Associate Director for Laboratory Programs, Wisconsin Clinical Cancer Center, University of Wisconsin Center for Health Sciences, Madison, Wisconsin

Richard E. Butcher, Ph.D. Associate Director/Research, Western Behavioral Sciences Institute, La Jolla, California

Richard G. Cornell, Ph.D. Professor and Chairman, Department of Biostatistics, University of Michigan, Ann Arbor, Michigan

Present affiliations:
*Medical Director, Department of Medical Affairs, Mead Johnson and Company, Evansville, Indiana
Tahia T. Daabees, Ph.D.* Research Fellow, Department of Pediatrics and Biochemistry, University of Iowa College of Medicine, Iowa City, Iowa

John D. Fernstrom, Ph.D. Associate Professor, Departments of Psychiatry and Pharmacology, University of Pittsburgh School of Medicine, Western Psychiatric Institute and Clinic, Pittsburgh, Pennsylvania

L. J. Filer, Jr., M.D., Ph.D. Professor, Department of Pediatrics, University of Iowa College of Medicine, Iowa City, Iowa

Michael W. Finkelstein, M.S., D.D.S. Assistant Professor, Department of Oral Pathology and Diagnosis, University of Iowa College of Dentistry, Iowa City, Iowa

Alfred E. Harper Professor, Departments of Biochemistry and Nutritional Sciences, University of Wisconsin, Madison, Wisconsin

David L. Horwitz, M.D., Ph.D. Associate Professor, Department of Medicine, University of Illinois Health Science Center, Chicago, Illinois

George E. Inglert, Ph.D. Chief, Cereal Science and Foods Laboratory, Northern Regional Research Center, U. S. Department of Agriculture, Peoria, Illinois

Hiroyuka Ishii Life Science Laboratory, Central Research Laboratories, Ajinomoto Company, Inc., Yokohama, Japan

Richard Koch, M.D.† Professor of Clinical Pediatrics, Children's Hospital of Los Angeles, and Professor, Department of Pediatrics, University of Southern California School of Medicine, Los Angeles, California

Adalbert Koestner, D.V.M., Ph.D. Professor and Chairman, Department of Pathology, Michigan State University, East Lansing, Michigan

Gilbert A. Leveille, Ph.D. Director, Nutrition and Health Sciences, General Foods Corporation, White Plains, New York

Kenneth E. McMartin, Ph.D. Assistant Professor, Department of Pharmacology, Section of Toxicology, Louisiana State University Medical Center, Shreveport, Louisiana

Present affiliations:
*Associate Professor, Department of Pharmacology, Faculty of Pharmacy, University of Alexandria, Alexandria, Egypt
†Head, Division of Medical Genetics, Children’s Hospital of Los Angeles, Los Angeles, California

Contributors

Yoshimasa Matsuzawa Life and Biopharmacy, Central Yokohama, Japan

David M. Matthews, M.D., Ph.D. Department of Pathology, Vincent Squerryes, England

Samuel V. Molinary, Ph.D. Department of Scientific Research, Searle and Company, Skokie, Illinois

Sakkubai Naidu, M.B.B.S. Department of Neurology, Loyola University, Chicago, Illinois

Yuichi O’Hara* Life Sciences, Ajinomoto Company, Inc., Yokohama, Japan

Linda Parsons Department of Medicine, Chicago, Illinois

Roy M. Pitkin, M.D. Professor of Psychology, University of Iowa College of Liberal Arts and Sciences

Katherine P. Porikos, Ph.D. Staff Associate, Department of Psychiatry, New York University School of Medicine, St. Lukes-Roosevelt Hospital Center, New York

W. Ann Reynolds, Ph.D. College of Pharmacy, University of California, Berkeley, California

Roberta Roach-Foltz, R.D. Department of Health Sciences, General Foods Corporation

Susan S. Schiffman, Ph.D. Duke University, Durham, North Carolina

Present affiliations:
*Section Manager, Product Science, Ajinomoto Company, Inc., New York
†Adjunct Assistant Professor of Psychology, Department of Psychology, University of California, Berkeley
Contributors

Yoshimasa Matsuzawa Life Science Laboratory, Department of Drug Metabolism and Biopharmacy, Central Research Laboratories, Ajinomoto Company, Inc., Yokohama, Japan

David M. Matthews, M.D., Ph.D. Professor, Department of Experimental Chemical Pathology, Vincent Square Laboratories, Westminster Hospital, London, England

Robert H. Mazur, Ph.D. Section Head, Sweetener Research Section, Department of Medicinal Chemistry, G.D. Searle & Co., Skokie, Illinois

Samuel V. Molinary, Ph.D. Scientific Consultant in Nutrition and Toxicology, Department of Scientific Regulatory Affairs, PepsiCo, Inc., Valhalla, New York

Sakkubai Naidu, M.B.B.S. Chief, Section of Pediatric Neurology, Department of Neurology, Loyola University Medical Center, Maywood, Illinois

Yuichi O’Hara* Life Science Laboratory, Central Research Laboratories, Ajinomoto Company, Inc., Yokohama, Japan

James A. Oppermann, Ph.D. Section Head, Department of Drug Metabolism, G. D. Searle & Co., Skokie, Illinois

Linda Parsons Department of Anatomy, University of Illinois College of Medicine, Chicago, Illinois

Roy M. Pitkin, M.D. Professor and Head, Department of Obstetrics and Gynecology, University of Iowa College of Medicine, Iowa City, Iowa

Katherine P. Porikos, Ph.D. † Research Associate, Obesity Research Center and Staff Associate, Department of Medicine, Columbia University College of Physicians and Surgeons, St. Lukes–Roosevelt Hospital Center, New York, New York

W. Ann Reynolds, Ph.D. Chancellor, California State University, Long Beach, California

Roberta Roak-Foltz, R.D. Research Specialist, Department of Nutrition and Health Sciences, General Foods Corporation, White Plains, New York

Paul G. Sanders Consulting Biostatistician, Department of Biostatistics, G. D. Searle & Co., Skokie, Illinois

Susan S. Schiffman, Ph.D. Professor, Department of Psychiatry, Duke University, Durham, North Carolina

Present affiliations:

*Section Manager, Product Safety and Assessment Department, Ajinomoto Company, Inc., Tokyo, Japan

†Adjunct Assistant Professor, Department of Psychiatry, University of Calgary, and Psychologist, Department of Psychiatry, Foothills Hospital, Calgary, Alberta, Canada
Contributors

Lewis D. Stegink, Ph.D. Professor, Departments of Pediatrics and Biochemistry, University of Iowa College of Medicine, Iowa City, Iowa

Frank M. Sturtevant, Ph.D. Director, Office of Scientific Affairs, Research and Development Division, G. D. Searle & Co., Skokie, Illinois

Stephen J. Suomi, Ph.D.* Associate, Professor, Department of Psychology, University of Wisconsin, Madison, Wisconsin

Thomas R. Teply, M.D., Ph.D. Professor, Department of Pharmacology, and Director, Toxicology Center, University of Iowa College of Medicine, Iowa City, Iowa

Theodore B. Van Itallie, M.D. Professor, Department of Medicine, Columbia University College of Physicians and Surgeons, St. Luke’s—Roosevelt Hospital Center, New York, New York

Willard J. Visek, M.D., Ph.D. Professor, Division of Medicine, College of Medicine, and Department of Food Science, University of Illinois at Urbana-Champaign, Urbana, Illinois

Charles V. Vorhees, Ph.D. Associate Professor, Department of Pediatrics, Psychotematology Laboratory, Institute for Developmental Research, Children’s Hospital Research Foundation, University of Cincinnati College of Medicine, Cincinnati, Ohio

Elizabeth J. Wenz, R.D., M.S. Nutritionist, Division of Medical Genetics, Children’s Hospital of Los Angeles, Los Angeles, California

Robert A. Wolfe, Ph.D. Associate Professor, Department of Biostatistics, University of Michigan, Ann Arbor, Michigan

Present affiliations:
*Chief, Laboratory of Comparative Ethology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland

Contents

Preface
Contributors

HISTORY AND BACKGROUND
1 Discovery of Aspartame
 Robert H. Mazur

2 Sweeteners: An Overall Per
 George E. Inglett

METABOLISM
3 Absorption of Peptides, Amino
 Derivatives
 David M. Matthews

4 Aspartate and Glutamate
 Lewis D. Stegink

5 Phenylalanine Metabolism
 Alfred E. Harper

6 Methanol Metabolism at
 Thomas R. Teply and

7 Aspartame Metabolism
 James A. Oppermann
6

Methanol Metabolism and Toxicity

Thomas R. Tephy
University of Iowa College of Medicine, Iowa City, Iowa

Kenneth E. McMartin
Louisiana State University Medical Center, Shreveport, Louisiana

INTRODUCTION

Methanol is commonly used in industry for organic synthetic procedures or as a solvent. As a result, it is accessible to the general public in a variety of products such as antifreeze, fuels (Sterno), duplicating machine fluids, and in gasoline as a fuel extender. Methanol and other alcohols have been employed as sources of energy or fuel for many years, particularly in times of war. Methanol's use as an automobile fuel, as well as other proposed uses for energy production, will increase human methanol contact from a limited laboratory or industrial exposure to a general environmental exposure. Although methanol theoretically represents a “clean” substance capable of oxidation to water and carbon dioxide, in humans biochemical reactions produce metabolites that are clearly toxic.

A consideration of the toxicity of methanol, especially in species which demonstrate signs and symptoms, seems appropriate for several reasons. First, humans are sensitive to methanol poisoning, and limits of tolerance must be considered. Second, nutritional factors may play an important role (e.g., folate deficiency) in determining susceptibility. Our current understanding of the mechanisms involved in methanol toxicity is described.

CHARACTERISTICS OF POISONING IN MAN

The toxicity of methanol in humans has been appreciated since the early part of the twentieth century. In 1855 MacFarlan (1) proposed that a mixture of 1 part
Projected Aspartame Intake: Daily Ingestion of Aspartic Acid, Phenylalanine, and Methanol

Roberta Roak-Foltz and Gilbert A. Leveille
General Foods Corporation, White Plains, New York

The safety assessment of any food additive requires a knowledge of the pharmacology and toxicology of the additive and information regarding exposure. Population exposure is generally difficult to determine for a new compound and cannot be accurately established before its introduction. For this reason it is important to ensure that estimates of exposure be conservative. Usually this means consciously overestimating rather than underestimating intake exposure.

Elsewhere in this volume there is extensive discussion of the metabolism and toxicology of aspartame and its degradation products phenylalanine, aspartic acid, methanol, and diketopiperazine. These extensive studies demonstrate that high doses of aspartame are well tolerated. However, it is important to estimate the probable range of aspartame intake that might be anticipated.

We have used two approaches to estimate exposure to aspartame or its metabolites. The simplest involved the assumption that aspartame would replace the apparent per capita sugar intake. The per capita caloric sweetener intake was calculated, on the basis of disappearance, to be 156 g/day (1). Using a sweetener ratio of 180:1, this yields a daily estimated aspartame intake of 867 mg/day. Actual intake would be somewhat lower, since it is recognized that disappearance data overestimate consumption and not all of the sweetener applications can be replaced by aspartame.

The second approach used to project aspartame intake involved developing a menu containing generous amounts of added sugars and assuming the substitution of aspartame for the added sweeteners. This menu is shown in Table 1. In Table 2
Table 1 Daily Menu Used to Estimate Potential Aspartame Intake

<table>
<thead>
<tr>
<th>Meals</th>
<th>Snacks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breakfast</td>
<td></td>
</tr>
<tr>
<td>6 fl oz breakfast beverage²</td>
<td>1 fresh apple</td>
</tr>
<tr>
<td>1 oz sugar-sweetened cereal²</td>
<td></td>
</tr>
<tr>
<td>½ banana</td>
<td></td>
</tr>
<tr>
<td>½ cup milk</td>
<td></td>
</tr>
<tr>
<td>1 slice toast</td>
<td></td>
</tr>
<tr>
<td>1 teaspoon margarine</td>
<td></td>
</tr>
<tr>
<td>1 cup coffee</td>
<td></td>
</tr>
<tr>
<td>3 packets sugar²</td>
<td></td>
</tr>
<tr>
<td>Lunch</td>
<td></td>
</tr>
<tr>
<td>½ cup pea soup</td>
<td></td>
</tr>
<tr>
<td>1 sandwich</td>
<td></td>
</tr>
<tr>
<td>3 slices bologna</td>
<td></td>
</tr>
<tr>
<td>1 oz cheddar cheese</td>
<td></td>
</tr>
<tr>
<td>2 slices bread</td>
<td></td>
</tr>
<tr>
<td>1 teaspoon mustard</td>
<td></td>
</tr>
<tr>
<td>2 lettuce leaves</td>
<td></td>
</tr>
<tr>
<td>1½ oz potato chips</td>
<td></td>
</tr>
<tr>
<td>8 fl oz soft drink²</td>
<td>2 sticks chewing gum²</td>
</tr>
<tr>
<td>½ cup vanilla pudding²</td>
<td>8 fl oz soft drink²</td>
</tr>
<tr>
<td>Dinner</td>
<td></td>
</tr>
<tr>
<td>1 fried chicken leg</td>
<td></td>
</tr>
<tr>
<td>½ cup peas and carrots</td>
<td></td>
</tr>
<tr>
<td>½ cup mashed potatoes</td>
<td></td>
</tr>
<tr>
<td>1 slice bread</td>
<td></td>
</tr>
<tr>
<td>1 teaspoon margarine</td>
<td></td>
</tr>
<tr>
<td>1 cup milk</td>
<td></td>
</tr>
<tr>
<td>½ cup gelatin dessert²</td>
<td></td>
</tr>
<tr>
<td>1 peach half</td>
<td></td>
</tr>
<tr>
<td>2 tablespoons whipped topping²</td>
<td></td>
</tr>
<tr>
<td>1 cup tea</td>
<td></td>
</tr>
<tr>
<td>2 packets sugar²</td>
<td>8 fl oz soft drink²</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

²Foods and beverages in which aspartame could substitute for sucrose or corn sweeteners.

from product to product. This menu is based on the level typical for each product applicable to containing foods.

Both of these approaches yield similar results. They can be used to estimate the phenylalanine, aspartic acid, and methanol intake of the average U.S. adult. The amount of phenylalanine, 40% aspartic acid, and 10% methanol intake at the typical adult level of each food item made from aspartame would result in 10 and 4% increased intakes of phenylalanine, aspartic acid, and methanol, respectively, and an added methanol exposure of 0.96 mg/day.

On the basis of disappearance data from the Continuing Survey of Food Intakes by Individuals (1977-1978), 846 mg of aspartame would translate to an increased daily intake of 347 mg of phenylalanine, 347 mg of aspartic acid, and 347 mg of methanol. The intake of phenylalanine and aspartic acid daily was calculated as part of the 1977-1978 U.S. Department of Agriculture Continuing Survey of Food Intakes by Individuals (2). Amino acid levels were derived for each of the 44 food groups consumed by the U.S. adult male age 19 years or older. The 44 food groups represented several foods with different amino acid compositions (e.g., corn, oats, rice, wheat for cereal products, dairy products (e.g., chicken, broiler or fryer meat).

Household measure equivalents were used to convert the 44 food groups using weights and measures from the U.S. Department of Agriculture Continuing Survey of Food Intakes by Individuals (2). For this purpose the 44 groups were divided into 10. This approach yielded estimates of 1.8, 2.1, and 2.4% increase in aspartame, phenylalanine, and aspartic acid intake, respectively. The inclusion of aspartic acid in the model would result in a 5% increase in the total aspartame intake.

It is clear from these estimates that the dietary aspartic acid intake appreciably. Similarly, the added methanol, which is formed by enzymatic sp
from product to product. This menu provides about 750 mg of aspartame when the level typical for each product application is used for the potential aspartame-containing foods.

Both of these approaches yield similar values for aspartame intake and can be used to estimate the phenylalanine, aspartic acid, and methanol exposures. The metabolism of aspartame yields, on a weight basis, approximately 50% phenylalanine, 40% aspartic acid, and 10% methanol. Using the menu approach and the typical aspartame level for each food, the estimated intake of aspartame would result in 10 and 4% increased intakes of phenylalanine and aspartic acid, respectively, and an added methanol exposure of 75 mg.

On the basis of disappearance data, the estimated potential aspartame intake of 867 mg would translate to an increased daily consumption of 433 mg of phenylalanine, 347 mg of aspartic acid, and 87 mg of methanol. For comparison, the phenylalanine and aspartic acid daily intakes were estimated from data collected as part of the 1977-1978 U.S. Department of Agriculture Nationwide Food Consumption Survey (2). Amino acid levels were calculated for the average amount consumed for each of the 44 food groups reported in the survey. When a group represented several foods with different amino acid levels, an average was used (e.g., corn, oats, rice, wheat for cereal grains) or one form was selected as representative (e.g., chicken broiler or fryer, flesh only, roasted for all chicken).

Household measure equivalents were determined for the foods from the 44 groups using weights and measures from the U.S. Department of Agriculture (3-10). For this purpose the 44 groups were collapsed into 17 categories (Table 3). This approach yielded estimates of 3.6 and 6.8 g for daily phenylalanine and aspartic acid intakes, respectively. Combining these data, replacement of all sweeteners with aspartame would increase phenylalanine intake by 12% and aspartic acid intake by 5% and would add 87 mg of methanol to the diet.

It is clear from these estimates that aspartame is not likely to alter amino acid intake appreciably. Similarly, the added methanol burden is insignificant. Methanol, which is formed by enzymatic splitting of pectic substances, is a component

Table 2: Nutrients Provided by Menu Before and After Replacement of Added Sweeteners by Aspartame

<table>
<thead>
<tr>
<th></th>
<th>Menu with sucrose</th>
<th>Menu with aspartame</th>
<th>Percent difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy</td>
<td>2800 kcal</td>
<td>2200 kcal</td>
<td>-21</td>
</tr>
<tr>
<td>Protein</td>
<td>86 g</td>
<td>88 g</td>
<td>+2</td>
</tr>
<tr>
<td>Carbohydrate</td>
<td>396 g</td>
<td>225 g</td>
<td>-43</td>
</tr>
<tr>
<td>Total sugars</td>
<td>261 g</td>
<td>71 g</td>
<td>-73</td>
</tr>
<tr>
<td>Phenylalanine</td>
<td>4.0 g</td>
<td>4.4 g</td>
<td>+10</td>
</tr>
<tr>
<td>Aspartic acid</td>
<td>7.3 g</td>
<td>7.6 g</td>
<td>+4</td>
</tr>
<tr>
<td>Methanol</td>
<td>-</td>
<td>75 mg</td>
<td>-</td>
</tr>
</tbody>
</table>
Table 3 Average Intake per Individual in a Day

<table>
<thead>
<tr>
<th>6.7 oz</th>
<th>Meat, poultry, or fish</th>
</tr>
</thead>
<tbody>
<tr>
<td>1½ cups</td>
<td>Milk</td>
</tr>
<tr>
<td>⅛ oz</td>
<td>Cheese</td>
</tr>
<tr>
<td>¼</td>
<td>Egg</td>
</tr>
<tr>
<td>1 oz</td>
<td>Legumes, nuts, or seeds</td>
</tr>
<tr>
<td>Equivalent of 4 slices</td>
<td>Bread (includes other baked goods)</td>
</tr>
<tr>
<td>⅛ oz</td>
<td>Ready-to-eat cereal</td>
</tr>
<tr>
<td>¼ cup</td>
<td>Pasta or other grain mixtures</td>
</tr>
<tr>
<td>¼</td>
<td>Potato</td>
</tr>
<tr>
<td>1 cup</td>
<td>Vegetables</td>
</tr>
<tr>
<td>⅛ cup</td>
<td>Fruit or fruit juice</td>
</tr>
<tr>
<td>2 teaspoons</td>
<td>Table fat or salad dressing</td>
</tr>
<tr>
<td>1 cup</td>
<td>Soft drinks or fruit drinks</td>
</tr>
<tr>
<td>¼ cup</td>
<td>Beer or ale</td>
</tr>
<tr>
<td>Equivalent of 2 tablespoons</td>
<td>Sugar, candy, or other sweets</td>
</tr>
<tr>
<td>1½ cups</td>
<td>Coffee (6 fl oz cup)</td>
</tr>
<tr>
<td>2/3 cup</td>
<td>Tea (6 fl oz cup)</td>
</tr>
</tbody>
</table>

Source: Adapted from The USDA Nationwide Food Consumption Survey 1977-78, Preliminary Report No. 2, Food and nutrient intakes of individuals in 1 day in the United States, Spring 1977, Tables 1.1a, 1.2a, 1.3a, 1.4a, and 1.5a.

of many fruits, vegetables, and wines. The amount of methanol contributed by these foods in the course of a day would likely exceed any contribution from aspartame (11-17).

It should be emphasized that these estimates are by design high. Actual intakes of aspartame will certainly be less, probably closer to 50% of the values we have estimated.

REFERENCES

Projected Aspartame Intake

Aspartame Metabolism in Humans: Acute Dosing Studies

Lewis D. Stegink
University of Iowa College of Medicine, Iowa City, Iowa

Toxicology is based on the premise that all compounds are toxic at some dose. Salt, water, sugar, and even a mother’s love produce deleterious effects when given in inappropriate amounts. Thus it is not surprising that very large doses of aspartame (Fig. 1) or aspartame’s component parts (aspartate, phenylalanine, and methanol) produce deleterious effects in sensitive animal species. The critical question is whether the compound is potentially harmful at normal use and potential abuse levels.

Aspartame may be absorbed and metabolized in one of two ways (Fig. 2). It may be hydrolyzed in the intestinal lumen to aspartate, phenylalanine, and methanol by proteolytic and hydrolytic enzymes (1-5). These compounds are absorbed from the lumen and reach the blood in a manner similar to that of amino acids and methanol arising from dietary protein or polysaccharides. Alternatively, aspartame may be absorbed directly into mucosal cells by peptide transport mechanisms (4,5) with subsequent hydrolysis within the cell to aspartate, phenylalanine, and methanol. In either case, large doses of aspartame release aspartate, phenylalanine, and methanol to the portal blood, and these components must be metabolized and/or excreted.

Olney (6-9) and Reif-Lehrer (10) expressed concern about the safety of aspartame because of its aspartate content. Administration of high doses of aspartate to neonatal mice or rats results in elevated plasma aspartate concentrations (11-16) and hypothalamic neuronal necrosis (14-18). Aspartame administered in large amounts (1-2.5 g/kg body weight) to infant mice produces neuronal necrosis...