I. SUMMARY

In February 1981, the National Institute for Occupational Safety and Health (NIOSH) received a request to determine if a potential health hazard existed to employees from exposure to methyl alcohol while operating a spirit duplicator and to the chemical by-products produced when using an electronic stencil maker.

The spirit duplicator is used for periods of time ranging from several minutes to several hours per day. NIOSH conducted an environmental evaluation on April 1, 1981. The average methyl alcohol concentration for a 25 minute period was 1025 ppm. The concentrations for the consecutive 5 minute periods were 1000, 1050, 1100, 950 and 1030 ppm. The NIOSH recommended criteria for methyl alcohol exposures are an 8 hour time weighted average concentration of 200 ppm and/or a 15 minute level of 800 ppm. The 1025 ppm concentration measured exceeded the 15 minute exposure criteria. At the end of the 25 minute period the operator experienced eye irritation.

The stencil cutter was not evaluated at this time. Sampling had recently been conducted by the University of Washington Environmental Health Personnel. The samples collected on Tenex in the exhaust of the cutter and analyzed on a computerized mass spectrophotometer gas chromatograph, showed approximately 28 aliphatic and aromatic hydrocarbon compounds that are indicative of a waxy coating. All identified compounds were present in quantities that were less than 0.1 ppm. Samples, collected in a cold trap, showed traces of carbon dioxide, sulfur dioxide and aliphatic and aromatic hydrocarbons. A recent Health Hazard Evaluation (HHE 81-002) conducted on a stencil cutter of the same manufacturer as the one in this evaluation, showed traces of hydrocarbons C-8 to C-11 and toluene. Analysis of a carbon disulfide extraction of the plastic stencil by gas chromatography (GC) detected only one high boiling component. This component was identified by GC/mass spectroscopy (MS) analysis as a phthalate, probably 2-ethyl-hexyl phthalate (DEHP), a common plasticizer used in vinyl plastics to impart a desired degree of flexibility.

Ozone concentrations, measured with detector tubes, were less than 0.01 ppm. The employees stated that when the stencil cutter is in operation they may experience nose and throat irritation and occasional dizziness.

NIOSH has determined that a health hazard due to excessive exposure to methyl alcohol existed in the operation of a spirit duplicator at the University of Washington. This is based on the methyl alcohol concentrations measured, eye irritation experienced by the operator, and exposure levels similar to those found in a large study involving use of spirit duplicators (TA 80-32 Everett School District) which resulted in operators experiencing such symptoms as blurred vision, headache, nausea and dizziness. The by-products identified from the stencil cutter during operation were present in very low concentrations. Adverse health effects are usually not found with these low exposures. Recommendations to reduce the exposure to methyl alcohol vapors are presented with examples of suggested local exhaust ventilation designs in Section VIII.

KEYWORDS: SIC 7339 (Reproduction Services) methyl alcohol, schools, spirit duplicators, electronic stencil makers.
IV EVALUATION DESIGN AND METHODS

1. Environmental

Breathing zone samples were collected for methyl alcohol vapors over a 25-minute sampling period. Because the exposure time varies from day to day, a short term sample was collected to indicate the potential exposure while operating the duplicator and to determine if the methyl alcohol concentrations exceeded the NIOSH 15-minute recommended exposure level.

The breathing zone air concentrations were measured using a Wilks Miran 1A infrared gas analyzer with the following settings: Wavelength, 9.5 microns; slit width, 0.5 millimeters; response time, 1 sec; path length, 2.25 meters; absorbance range, 0-1 absorbance units. With these settings the unit had a range of 0-2300 ppm methyl alcohol.

2. Medical

Each employee was interviewed about the health affects experienced during the use of the copying equipment.

V EVALUATION CRITERIA

The environmental evaluation criteria for methyl alcohol are the eight hour time-weighted average (TWA) of 200 ppm (State of Washington standard) and the short term exposure level for any 15-minute period of 800 ppm (NIOSH recommended level).1

The two most common routes of occupational exposure to methyl alcohol are inhalation and absorption through the skin. Signs and symptoms of methyl alcohol intoxication include headache; dizziness; nausea; vomiting; weakness; vertigo; chills; shooting pains in the lower extremities; unsteady gait; dermatitis; multiple neuritis characterized by paresthesia, numbness, prickling and shooting pain in the back of the hands and forearms as well as edema of the arms; nervousness; gastric pain; insomnia; blurred vision; general visual disturbances; blindness and acidosis (metabolic disturbance).

Methyl alcohol is not known to be a liver toxin in humans, however, there have been no long-term epidemiologic studies of chronic, low-level occupational exposure1. There have been a few older animal studies 2, 3, 4 where autopsy revealed deterioration of basic liver tissue (parenchymatous degeneration) proceeding, in the more severe cases, to focal necrosis (localized areas of tissue death). It is difficult to interpret these reports of liver toxicity in animals which were done in the early 1900's. The data are presented summarily and not in sufficient
detail for careful evaluation. In general, the animal data is inconclusive. It is reported that primates and non-primates metabolize methyl alcohol differently, and the importance of this difference is not well known.

There have been autopsy reports of pancreatic necrosis in humans after acute ingestion of methyl alcohol. As with liver toxicity, the pancreatic pathology in humans is not specific, and chronic ethanol intake is usually an important confounding and likely causative factor.

VI RESULTS AND DISCUSSION

1. Environmental Results

The spirit duplicator operator's exposure to methyl alcohol vapors was measured on April 1, 1981 over a 25 minute period during which time 1025 copies (average 41 copies/minute) were made from 33 master sheets. Two outside windows and the door to the room were open.

The average methyl alcohol concentration for the 25 minute period was 1025 ppm. The concentrations for the consecutive 5 minute periods were 1000, 1050, 1100, 950 and 1030 ppm. This exceeds the recommended criteria of 800 ppm for any 15 minute exposure and the State of Washington standard of 250 ppm for a 15 minute period. At 1050 ppm, the 200 ppm 8 hour Time-Weighted-Average criteria, would be exceeded after 1.5 hours. The operator experienced eye irritation during this sampling period.

Both the breathing zone methyl alcohol concentrations measured and the eye irritation experienced by the operator are consistent with the findings of a large Health Hazard Evaluation conducted at the Everett Washington School District. In this study 75% of the duplicators tested produced 15 minute concentrations that exceeded 800 ppm (Mean 1285 ppm and median 1185 ppm). In addition 45% of the operators experienced some symptoms such as blurred vision, headache, nausea, dizziness and eye irritation, which are consistent with the toxic effects of methyl alcohol.

The stencil cutter was not evaluated at this time. Sampling had recently been conducted by the University of Washington Environmental Health Personnel. The samples collected on Tenex in the exhaust of the cutter and analyzed on a computerized mass spectrophotometer gas chromatograph, showed approximately 28 aliphatic and aromatic hydrocarbon compounds, that are indicative of a waxy coating. All identified compounds were present in quantities that were less than 0.1 ppm. Samples, collected in a cold trap, showed traces of carbon dioxide, sulfur dioxide and aliphatic and aromatic hydrocarbons. A recent Health Hazard Evaluation (HHE 81-002) conducted on a stencil
cutter of the same manufacturer as the one in this evaluation, showed
traces of hydrocarbons C-8 to C-11 and toluene. Analysis of a carbon
disulfide extraction of the plastic stencil by gas chromatography
(GC) detected only one high boiling component. This component was
identified by GC/mass spectroscopy (MS) analysis as a phthalate,
probably 2-ethyl-hexyl phthalate (DEHP), a common plasticizer used in
vinyl plastics to impart a desired degree of flexibility.

Ozone concentrations, measured with detector tubes, were less than
0.01 ppm. The employees stated that when the stencil cutter is in
operation that they may experience nose and throat irritation and
occasional dizziness.

VII CONCLUSION

NIOSH has determined that a health hazard due to excessive exposure to methyl
alcohol existed in the operation of a spirit duplicator at the University of
Washington. This is based on the methyl alcohol concentrations measured, eye
irritation experienced by the operator, and equivalent exposure levels as
those found in a large study involving use of spirit duplicators (TA 80-32
Everett School District) which resulted in operators experiencing such
symptoms as blurred vision, headache, nausea and dizziness. Recommendations
to reduce the exposure to methyl alcohol vapors are listed in Section VIII.
Examples of the suggested local exhaust ventilation designs are found in
Figures 1, 2 and 3.

The by-products identified from the stencil cutter during operation were
present in very low concentrations. Adverse health effects are usually not
found with these low exposures, however, they may occur through synergistic
reactions. This process should be studied in-depth due to the fact that many
workers use this process, however this would be difficult since there is
usually only one stencil cutter in any location, the number of workers exposed
at each location is minimal, and the time of use varies greatly.

VIII RECOMMENDATIONS

1. Limit the operation of the spirit duplicator by any one person to 5
minute runs with a minimum waiting period between runs of 10 minutes.

2. Consider substituting Type 1 duplicator fluid (95% ethyl alcohol, 5%
cellosolve) for methanol. The occupational health standard for
ethyl alcohol is 1000 ppm and for cellosolve it is 200 ppm. (The
American Conference of Industrial Hygienists currently recommends
50 ppm for cellosolve.) Ethyl alcohol costs more per gallon. It
will produce good copies if a hard wick is used in the duplicator.
If too much ethyl alcohol is transferred to paper, bleed through may
occur and the ink will run.